
Getting started in GAP
GAPDays Summer 2025

Meike Weiss and Lukas Schnelle

August 2025

Basics Exercise 1a Programming Exercise 1b

Minicourse 1

1. Getting started
a) Basic Basics
b) Basic Programming

2. Programming in GAP: Working on problems from
scratch

3. GAP Packages and Libraries: Using existing GAP
infrastructure

Lectures and Exercises:

Basics Exercise 1a Programming Exercise 1b

What is GAP?

- GAP stands for Groups, Algorithms and Programming
- System for computational discrete algebra

Why use GAP?
Programming Language:

- Open-source
- Interactive use and scripting
- Garbage collecter
- Break loop (for debugging)

Mathematical capabilities:
- Large library of implementations of various algebraic

algorithms
- Databases of groups, character tables and much more
- Separate packages of additional functions

Basics Exercise 1a Programming Exercise 1b

What is GAP?

- GAP stands for Groups, Algorithms and Programming
- System for computational discrete algebra

Why use GAP?

Programming Language:
- Open-source
- Interactive use and scripting
- Garbage collecter
- Break loop (for debugging)

Mathematical capabilities:
- Large library of implementations of various algebraic

algorithms
- Databases of groups, character tables and much more
- Separate packages of additional functions

Basics Exercise 1a Programming Exercise 1b

What is GAP?

- GAP stands for Groups, Algorithms and Programming
- System for computational discrete algebra

Why use GAP?
Programming Language:

- Open-source
- Interactive use and scripting
- Garbage collecter
- Break loop (for debugging)

Mathematical capabilities:
- Large library of implementations of various algebraic

algorithms
- Databases of groups, character tables and much more
- Separate packages of additional functions

Basics Exercise 1a Programming Exercise 1b

What is GAP?

- GAP stands for Groups, Algorithms and Programming
- System for computational discrete algebra

Why use GAP?
Programming Language:

- Open-source
- Interactive use and scripting
- Garbage collecter
- Break loop (for debugging)

Mathematical capabilities:
- Large library of implementations of various algebraic

algorithms
- Databases of groups, character tables and much more
- Separate packages of additional functions

Basics Exercise 1a Programming Exercise 1b

Installing GAP

- Available for Linux, macOs and Windows
- Installation guide on the GAP website

https://www.gap-system.org/install/

- Ask for help!

https://www.gap-system.org/install/

Basics Exercise 1a Programming Exercise 1b

GAP Session

Start GAP Session:

End GAP Session:
gap> quit;

Basics Exercise 1a Programming Exercise 1b

Documentation

- Tutorial includes a first introduction
- Reference Manual includes complete descriptions and

examples of all functions

- Use ? to access documentation related to specific
commands in a GAP session

gap> ?CyclicGroup;
gap> ?SymmetricGroup;

https://docs.gap-system.org/doc/tut/chap0_mj.html
https://docs.gap-system.org/doc/ref/chap0_mj.html

Basics Exercise 1a Programming Exercise 1b

Syntax

- Every command should end with a semicolon ; (or ;; if
the output should not be printed)

- Use := for assignments of variables

gap> 1 + 1;
2
gap> x := 1 + 1;;
gap> x;
2

Basics Exercise 1a Programming Exercise 1b

Standard Arithmetic: + , - , * , / , ˆ , mod

Comparison Operators: = , <> , < , > , ≤ , ≥

Booleans: true , false

Basics Exercise 1a Programming Exercise 1b

Lists

- Collection of elements (numbers, list or other objects)
- List can contain different types of elements (but not a good

practice)
- Index starts from 1
- More functionalities in the documentation

gap> L := [4, 1, 3];;
gap> L[1];
4

→ Sets are lists without repetitions

Basics Exercise 1a Programming Exercise 1b

Lists

- Collection of elements (numbers, list or other objects)
- List can contain different types of elements (but not a good

practice)
- Index starts from 1
- More functionalities in the documentation

gap> L := [4, 1, 3];;
gap> L[1];
4

→ Sets are lists without repetitions

Basics Exercise 1a Programming Exercise 1b

Lists

- Collection of elements (numbers, list or other objects)
- List can contain different types of elements (but not a good

practice)
- Index starts from 1
- More functionalities in the documentation

gap> L := [4, 1, 3];;
gap> L[1];
4

→ Sets are lists without repetitions

Basics Exercise 1a Programming Exercise 1b

Lists

gap> M := [1..3];;

gap> M[2];
2
gap> M[1] := 4;;
gap> M;
[4, 2, 3]
gap> Add(M,8);
gap> M;
[4, 2, 3, 8]
gap> Remove(M,1);
4
gap> M;
[2, 3, 8]
gap> Maximum(M);
8

Basics Exercise 1a Programming Exercise 1b

Lists

gap> M := [1..3];;
gap> M[2];
2

gap> M[1] := 4;;
gap> M;
[4, 2, 3]
gap> Add(M,8);
gap> M;
[4, 2, 3, 8]
gap> Remove(M,1);
4
gap> M;
[2, 3, 8]
gap> Maximum(M);
8

Basics Exercise 1a Programming Exercise 1b

Lists

gap> M := [1..3];;
gap> M[2];
2
gap> M[1] := 4;;
gap> M;
[4, 2, 3]

gap> Add(M,8);
gap> M;
[4, 2, 3, 8]
gap> Remove(M,1);
4
gap> M;
[2, 3, 8]
gap> Maximum(M);
8

Basics Exercise 1a Programming Exercise 1b

Lists

gap> M := [1..3];;
gap> M[2];
2
gap> M[1] := 4;;
gap> M;
[4, 2, 3]
gap> Add(M,8);
gap> M;
[4, 2, 3, 8]

gap> Remove(M,1);
4
gap> M;
[2, 3, 8]
gap> Maximum(M);
8

Basics Exercise 1a Programming Exercise 1b

Lists

gap> M := [1..3];;
gap> M[2];
2
gap> M[1] := 4;;
gap> M;
[4, 2, 3]
gap> Add(M,8);
gap> M;
[4, 2, 3, 8]
gap> Remove(M,1);
4
gap> M;
[2, 3, 8]

gap> Maximum(M);
8

Basics Exercise 1a Programming Exercise 1b

Lists

gap> M := [1..3];;
gap> M[2];
2
gap> M[1] := 4;;
gap> M;
[4, 2, 3]
gap> Add(M,8);
gap> M;
[4, 2, 3, 8]
gap> Remove(M,1);
4
gap> M;
[2, 3, 8]
gap> Maximum(M);
8

Basics Exercise 1a Programming Exercise 1b

Copy of List

Use ShallowCopy to make a copy that can be modified
without changing the original

gap> L := [4, 1, 3];;

gap> M := L;;
gap> Add(M,6);;
gap> L;
[4, 1, 3, 6]

gap> N := ShallowCopy(L);;
gap> Add(N,6);;
gap> L;
[4, 1, 3]

Basics Exercise 1a Programming Exercise 1b

Copy of List

Use ShallowCopy to make a copy that can be modified
without changing the original

gap> L := [4, 1, 3];;

gap> M := L;;
gap> Add(M,6);;
gap> L;
[4, 1, 3, 6]

gap> N := ShallowCopy(L);;
gap> Add(N,6);;
gap> L;
[4, 1, 3]

Basics Exercise 1a Programming Exercise 1b

Copy of List

Use ShallowCopy to make a copy that can be modified
without changing the original

gap> L := [4, 1, 3];;

gap> M := L;;
gap> Add(M,6);;
gap> L;
[4, 1, 3, 6]

gap> N := ShallowCopy(L);;
gap> Add(N,6);;
gap> L;
[4, 1, 3]

Basics Exercise 1a Programming Exercise 1b

Loops

Different options: for, while or repeat loop

gap> for i in [1..2] do
> Print(iˆ2,"\n");
> od;
1
4
gap> i := 1;;
gap> while i <= 2 do
> Print(iˆ2,"\n");
> i := i + 1;
> od;
1
4

→ break, continue and return to exit a loop earlier

Basics Exercise 1a Programming Exercise 1b

Loops

Different options: for, while or repeat loop
gap> for i in [1..2] do
> Print(iˆ2,"\n");
> od;
1
4

gap> i := 1;;
gap> while i <= 2 do
> Print(iˆ2,"\n");
> i := i + 1;
> od;
1
4

→ break, continue and return to exit a loop earlier

Basics Exercise 1a Programming Exercise 1b

Loops

Different options: for, while or repeat loop
gap> for i in [1..2] do
> Print(iˆ2,"\n");
> od;
1
4
gap> i := 1;;
gap> while i <= 2 do
> Print(iˆ2,"\n");
> i := i + 1;
> od;
1
4

→ break, continue and return to exit a loop earlier

Basics Exercise 1a Programming Exercise 1b

Loops

Different options: for, while or repeat loop
gap> for i in [1..2] do
> Print(iˆ2,"\n");
> od;
1
4
gap> i := 1;;
gap> while i <= 2 do
> Print(iˆ2,"\n");
> i := i + 1;
> od;
1
4

→ break, continue and return to exit a loop earlier

Basics Exercise 1a Programming Exercise 1b

Conditional Statements

gap> n := 7;;
gap> if n mod 2 = 0 then
> Print("Even");
> else
> Print("Odd");
Odd
> fi;

→ Use elif for else if statement

Basics Exercise 1a Programming Exercise 1b

Conditional Statements

gap> n := 7;;
gap> if n mod 2 = 0 then
> Print("Even");
> else
> Print("Odd");
Odd
> fi;

→ Use elif for else if statement

Basics Exercise 1a Programming Exercise 1b

Read Files

- Often helpful to write commands or function in files
- .g is common file type for GAP code
- Instead of writing in the terminal, read these files

gap> Read("FirstSquares.g");

Basics Exercise 1a Programming Exercise 1b

Read Files

- Often helpful to write commands or function in files
- .g is common file type for GAP code
- Instead of writing in the terminal, read these files

gap> Read("FirstSquares.g");

Basics Exercise 1a Programming Exercise 1b

a) Consider one of the provided files (https://github.com/MeikeWeiss/
GAP-Days2025-Intro/tree/master/Exercise1/Exercise1a), read the
code and find the (syntax) errors by loading it in your GAP session.

- FirstSquares
- Factorial
- Signum
- SortList

b) Lists:
- Compute the sum of the first 100 numbers using a for (and while) loop.
- Define a list of integers and compute the list consisting of their squares.

Try do to this just by using one command.
- Define a list of integers and compute the sublist consisting of those that

are even. Try do to this just by using one command.
c) Groups:

- Let G be the group generated by
(1, 2, 3, 4), (5, 6, 7, 8), (1, 5)(2, 6)(3, 7)(4, 8). Compute the order of G and
show that G is not abelian. Additionally, compute the center of G and
show that it is a cyclic group of order four and that it has index 8.

- Given a set S of elements in a given group, compute a smaller subset
consisting of S-conjugate representatives (within S). (Intermediate)

- More exercises can be found here
https://www.ilariacolazzo.info/gap/tutorials/sheet2/.

d) Matrices:
- Create a square matrix M and a vector v and compute M ∗ v and v ∗ M .
- Determine the determinant, the eigenvalues and the eigenvectors.

https://github.com/MeikeWeiss/GAP-Days2025-Intro/tree/master/Exercise1/Exercise1a
https://github.com/MeikeWeiss/GAP-Days2025-Intro/tree/master/Exercise1/Exercise1a

Basics Exercise 1a Programming Exercise 1b

Functions

Named parts of code, that can be easily reused. They can have
inputs for use in the function.

gap> timesThree:=function(x)
> return 3*x;
> end;;
gap> timesThree(5);
15

Basics Exercise 1a Programming Exercise 1b

Functions

Named parts of code, that can be easily reused. They can have
inputs for use in the function.
gap> timesThree:=function(x)
> return 3*x;
> end;;

gap> timesThree(5);
15

Basics Exercise 1a Programming Exercise 1b

Functions

Named parts of code, that can be easily reused. They can have
inputs for use in the function.
gap> timesThree:=function(x)
> return 3*x;
> end;;
gap> timesThree(5);
15

Basics Exercise 1a Programming Exercise 1b

Often helpful when loading functions from files.
percentage.g:
plusTenPercent := function(x)
return x*(1.1);
end;;

plusPercent := function(x, y)
local decimal;
decimal := (1+(y/100));
return x*decimal;
end;;

Then in GAP:
gap> Read("percentage.g");
gap> plusTenPercent(15);
16.5
gap> plusPercent(15, 5);
63/4

Basics Exercise 1a Programming Exercise 1b

Often helpful when loading functions from files.
percentage.g:
plusTenPercent := function(x)
return x*(1.1);
end;;
plusPercent := function(x, y)
local decimal;
decimal := (1+(y/100));
return x*decimal;
end;;

Then in GAP:
gap> Read("percentage.g");
gap> plusTenPercent(15);
16.5
gap> plusPercent(15, 5);
63/4

Basics Exercise 1a Programming Exercise 1b

Often helpful when loading functions from files.
percentage.g:
plusTenPercent := function(x)
return x*(1.1);
end;;
plusPercent := function(x, y)
local decimal;
decimal := (1+(y/100));
return x*decimal;
end;;

Then in GAP:
gap> Read("percentage.g");
gap> plusTenPercent(15);
16.5
gap> plusPercent(15, 5);
63/4

Basics Exercise 1a Programming Exercise 1b

Fibonacci Sequence

Let us write a function, that computes a given element in the
Fibonacci sequence. fib.g:
fibonacciNumber:=function(n)
if n = 0 then
return 0;
elif n = 1 then
return 1;
else
return fibonacciNumber(n-1) + fibonacciNumber(n-2);
fi;
end;;

Basics Exercise 1a Programming Exercise 1b

Now let us run this code:
gap> Read("fib.g");
gap> fibonacciNumber(5);
5
gap> fibonacciNumber(12);
144

Basics Exercise 1a Programming Exercise 1b

What happens for other numbers?
gap> fibonacciNumber(-5);
Error, recursion depth trap (5000) in
fibonacciNumber(n - 1) at fib.g:7 called from
fibonacciNumber(n - 1) at fib.g:7 called from
fibonacciNumber(n - 1) at fib.g:7 called from
fibonacciNumber(n - 1) at fib.g:7 called from
fibonacciNumber(n - 1) at fib.g:7 called from
fibonacciNumber(n - 1) at fib.g:7 called from
... at *stdin*:9
you may ’return;’
brk>

Basics Exercise 1a Programming Exercise 1b

Break loop

Opens when the code encouters an error.
Sometimes can be continued (by typing return;) and
sometimes not.
Allows interaction with the variables at the current state.
Can be called manually with Error("text to show");

Basics Exercise 1a Programming Exercise 1b

Let us consider the example from before:
gap> fibonacciNumber(-5);
Error, recursion depth trap (5000) in
fibonacciNumber(n - 1) at fib.g:7 called from
fibonacciNumber(n - 1) at fib.g:7 called from
fibonacciNumber(n - 1) at fib.g:7 called from
fibonacciNumber(n - 1) at fib.g:7 called from
fibonacciNumber(n - 1) at fib.g:7 called from
fibonacciNumber(n - 1) at fib.g:7 called from
... at *stdin*:9
you may ’return;’
brk> n;
-5003
brk>

Basics Exercise 1a Programming Exercise 1b

Let us call Error(...) directly if the input is not valid:
fibv2.g:
fibonacciNumber:=function(n)
if n < 0 then
Error("this function does not work for negative numbers");
fi;
if n = 0 then
return 0;
elif n = 1 then
return 1;
else
return fibonacciNumber(n-1) + fibonacciNumber(n-2);
fi;
end;;

Basics Exercise 1a Programming Exercise 1b

gap> Read("fibv2.g");
gap> fibonacciNumber(-5);
Error, this function does not work for negative numbers at
fibv2.g:3 called from
<function "fibonacciNumber">(<arguments>)
called from read-eval loop at *stdin*:110
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk>

Basics Exercise 1a Programming Exercise 1b

Write functions, that accomplish the following. Also test them for a sensible
number of inputs, so that the correctness is somewhat ensured.

Easy
- The Wythoff function, i.e. a generalisation of the Fibonacci function

where the starting integers can be freely chosen
-∗ Compute the greatest common divisor by using the Euclidean algorithm
- A FizzBuzz function, i.e. takes an integer n as input and returns a list

with n entries, where entry i is
(i) FizzBuzz if i is divisible by 3 and 5
(ii) Fizz if i is divisible by 3
(iii) Buzz if i is divisible by 5
(iv) i if none of the above are true

- A palindrome checker, i.e. for an input string if the reverse of that string
is the same.

Intermediate
- A function that solves the word problem in Z/nZ for a given integer n

and list of generators. E.g. find a word (ai)1≤i≤k ∈ {3, 5} such that((∑k
i=1 ai

)
mod n

)
= t for a provided target t.

-∗ A function which computes the sign of a given permutation, which is of
type permutation.

∗ These functions do have built in equivalents, which can be used to check
whether your function works as expected.

	Basics
	Exercise 1a
	Programming
	Exercise 1b

