Getting started in GAP
GAPDays Summer 2025

Meike Weiss and Lukas Schnelle

August 2025



Basics Exercise la Programming
000000000000 o 000000000

Minicourse 1

1. Getting started
a) Basic Basics
b) Basic Programming

2. Programming in GAP: Working on problems from
scratch

3. GAP Packages and Libraries: Using existing GAP
infrastructure

Lectures and Exercises:

Exercise 1b
o]
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What is GAP?

- GAP stands for Groups, Algorithms and Programming

- System for computational discrete algebra
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What is GAP?

- GAP stands for Groups, Algorithms and Programming

- System for computational discrete algebra

Why use GAP?
Programming Language:
- Open-source
- Interactive use and scripting

- Garbage collecter
- Break loop (for debugging)
Mathematical capabilities:
- Large library of implementations of various algebraic
algorithms
- Databases of groups, character tables and much more
- Separate packages of additional functions
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Installing GAP

- Awailable for Linux, macOs and Windows
- Installation guide on the GAP website

https://www.gap-system.org/install/
- Ask for help!


https://www.gap-system.org/install/
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GAP Session

Start GAP Session:

:~$ gap

GAP 4.14.0 of 2024-12-85

https://www.gap-system.org

Architecture: x86_64-pc-linux—gnu-default6U-kv9o

Configuration: gmp 6.2.0, GASMAN, readline

Loading the library and packages ...

Packages: AtlasRep 2.1.9, AttributeScheduler 0.1, AutoDoc 2023.06.19, Browse 1.8.21,
CTblLib 1.3.9, datastructures ©.3.1, Digraphs 1.10.0, FactInt 1.6.3, FGA 1.5.9,
Forms 1.2.12, GAPDoc 1.6.7, genss 1.6.9, GRAPE 4.9.2, 10 4.9.1,
NautyTracesInterface 0.3, orb 4.9.1, PrimGrp 3.4.4, recog 1.4.3,
SimplicialSurfaces 0.7, SmallGrp 1.5.d, SpinSym 1.5.2, StandardFF 1.0,
TomLib 1.2.11, TransGrp 3.6.5, utils 0.85

Try |'??help' for help. See also '?copyright', '?cite' and 'Zauthors'

gap>

End GAP Session:
gap> quit;
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Documentation

- includes a first introduction

- includes complete descriptions and
examples of all functions

- Use 7 to access documentation related to specific
commands in a GAP session

gap> 7CyclicGroup;
gap> ?SymmetricGroup;

Exercise 1b
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https://docs.gap-system.org/doc/tut/chap0_mj.html
https://docs.gap-system.org/doc/ref/chap0_mj.html
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Syntax

- Every command should end with a semicolon ; (or ;; if

the output should not be printed)

- Use := for assignments of variables
gap> 1 + 1;
2
gap> x := 1 + 1;;
gap> X;

2
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Standard Arithmetic: + , -, *, /, °, mod

Comparison Operators: =, <>, <, >, < >

Booleans: true , false
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Lists

- Collection of elements (numbers, list or other objects)

- List can contain different types of elements (but not a good
practice)

Index starts from 1

More functionalities in the documentation
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Lists

- Collection of elements (numbers, list or other objects)

- List can contain different types of elements (but not a good
practice)

Index starts from 1

More functionalities in the documentation

gap> L := [4, 1, 3];;
gap> L[1];
4
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Lists

- Collection of elements (numbers, list or other objects)

- List can contain different types of elements (but not a good
practice)

Index starts from 1

More functionalities in the documentation

gap> L := [4, 1, 3];;
gap> L[1];
4

— Sets are lists without repetitions



gap> M := [1..3];;



gap> M := [1..3];;
gap> M([2];
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Lists

gap> M := [1..3];;
gap> M([2];

2

gap> M[1] := 4;;
gap> M;

(4,2, 3]
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Lists

gap> M := [1..3];;
gap> M[2];

2

gap> M[1] := 4;;
gap> M;

(4,2, 3]

gap> Add(M,8);
gap> M;

(4,2, 3, 8]
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Lists

gap> M := [1..3];;
gap> M([2];

2

gap> M[1] := 4;;
gap> M;

(4,2, 3]

gap> Add(M,8);
gap> M;

[4, 2, 3, 8]

gap> Remove(M,1);
4

gap> M;

[2, 3, 8]
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Lists

gap> M := [1..3];;
gap> M([2];

2

gap> M[1] := 4;;
gap> M;

(4,2, 3]

gap> Add(M,8);
gap> M;

[4, 2, 3, 8]

gap> Remove(M,1);
4

gap> M;

[2, 3, 8]

gap> Maximum(M);
8
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Copy of List

Use ShallowCopy to make a copy that can be modified

without changing the original

gap> L := [4, 1, 3];
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Copy of List

Use ShallowCopy to make a copy that can be modified

without changing the original

gap> L := [4, 1, 3];

gap> M = L;;
gap> Add(M,6);;
gap> L;

(4,1, 3, 6]
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Copy of List

Use ShallowCopy to make a copy that can be modified

without changing the original

gap> L := [4, 1, 3];

gap> M = L;;
gap> Add(M,6);;
gap> L

(4,1, 3, 6]

gap> N := ShallowCopy(L);;
gap> Add(N,6);;

gap> L;

[4, 1, 3]



Different options: for, while or repeat loop



Different options: for, while or repeat loop

gap> for iin [1..2] do
> Print(i°2,"\n");

> od;

1

4
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Loops

Different options: for, while or repeat loop
gap> for iin [1..2] do

> Print(i"2,"\n");

> od;

1

4

gap> i := 1;;

gap> while i <= 2 do
> Print(i"2,"\n");
>i=1i+4 1;

> od;

1

4
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Loops

Different options: for, while or repeat loop
gap> for iin [1..2] do

> Print(i"2,"\n");

> od;

1

4

gap> i := 1;;

gap> while i <= 2 do
> Print(i"2,"\n");
>i=1i+4 1;

> od;

1

4

— break, continue and return to exit a loop earlier
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Conditional Statements

gap> n = T;;

gap> if n mod 2 = 0 then
> Print("Even");

> else

> Print("Odd");

Odd

> fi;



Basics Exercise la Programming Exercise 1b
000000000080 o 000000000 o

Conditional Statements

gap> n = T;;

gap> if n mod 2 = 0 then
> Print("Even");

> else

> Print("Odd");

Odd

> fi;

— Use elif for else if statement
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Read Files

- Often helpful to write commands or function in files
- .g is common file type for GAP code

- Instead of writing in the terminal, read these files
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Read Files

- Often helpful to write commands or function in files
- .g is common file type for GAP code

- Instead of writing in the terminal, read these files

gap> Read("FirstSquares.g");



Basics Exercise la Programming
000000000000 ° 000000000

a) Consider one of the provided files (https://github.com/MeikeWeiss/
GAP-Days2025-Intro/tree/master/Exercisel/Exercisela), read the
code and find the (syntax) errors by loading it in your GAP session.

- FirstSquares
- Factorial
- Signum
- SortList
b) Lists:

- Compute the sum of the first 100 numbers using a for (and while) loop.
- Define a list of integers and compute the list consisting of their squares.

Try do to this just by using one command.

- Define a list of integers and compute the sublist consisting of those that
are even. Try do to this just by using one command.

¢) Groups:

- Let G be the group generated by
(1,2,3,4),(5,6,7,8),(1,5)(2,6)(3,7)(4,8). Compute the order of G and
show that G is not abelian. Additionally, compute the center of G and
show that it is a cyclic group of order four and that it has index 8.

Given a set S of elements in a given group, compute a smaller subset
consisting of S-conjugate representatives (within S). (Intermediate)
More exercises can be found here
https://www.ilariacolazzo.info/gap/tutorials/sheet2/.

d) Matrices:

- Create a square matrix M and a vector v and compute M * v and v * M.

- Determine the determinant, the eigenvalues and the eigenvectors.

Exercise 1b
o


https://github.com/MeikeWeiss/GAP-Days2025-Intro/tree/master/Exercise1/Exercise1a
https://github.com/MeikeWeiss/GAP-Days2025-Intro/tree/master/Exercise1/Exercise1a

Named parts of code, that can be easily reused. They can have
inputs for use in the function.
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Functions

Named parts of code, that can be easily reused. They can have
inputs for use in the function.

gap> timesThree:=function(x)
> return 3*x;
> end;;
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Functions

Named parts of code, that can be easily reused. They can have
inputs for use in the function.

gap> timesThree:=function(x)
> return 3*x;

> end;;

gap> timesThree(5);

15
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Often helpful when loading functions from files.
percentage.g:

plusTenPercent := function(x)
return x*(1.1);
end;;

Exercise 1b
o]
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Often helpful when loading functions from files.
percentage.g:

plusTenPercent := function(x)
return x*(1.1);

end;;

plusPercent := function(x, y)
local decimal;

decimal := (1+(y/100));
return x*decimal;

end;;
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Often helpful when loading functions from files.
percentage.g:

plusTenPercent := function(x)
return x*(1.1);

end;;

plusPercent := function(x, y)
local decimal;

decimal := (1+(y/100));
return x*decimal;

end;;

Then in GAP:
gap> Read("percentage.g");
gap> plusTenPercent(15);
16.5
gap> plusPercent(15, 5);
63/4
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Fibonacci Sequence

Let us write a function, that computes a given element in the
Fibonacci sequence. fib.g:

fibonacciNumber:=function(n)

if n = 0 then

return 0;

elif n = 1 then

return 1;

else

return fibonacciNumber(n-1) + fibonacciNumber (n-2);
fi;

end;;
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Now let us run this code:
gap> Read("fib.g");
gap> fibonacciNumber(5);
)
gap> fibonacciNumber(12);
144
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What happens for other numbers?

gap> fibonacciNumber(-5);
Error, recursion depth trap (5000) in
fibonacciNumber( n - 1) at fib.g:7 called from

fibonacciNumber( n - 1) at fib.g:7 called from
fibonacciNumber( n - 1) at fib.g:7 called from
fibonacciNumber( n - 1) at fib.g:7 called from
fibonacciNumber( n - 1) at fib.g:7 called from
fibonacciNumber( n - 1) at fib.g:7 called from

.. at *stdin*:9
you may 'return;’
brk>
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Break loop

Opens when the code encouters an error.

Sometimes can be continued (by typing return;) and
sometimes not.
Allows interaction with the variables at the current state.

Can be called manually with Error("text to show");
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Let us consider the example from before:

gap> fibonacciNumber(-5);
Error, recursion depth trap (5000) in
fibonacciNumber( n - 1) at fib.g:7 called from

fibonacciNumber( n - 1) at fib.g:7 called from
fibonacciNumber( n - 1) at fib.g:7 called from
fibonacciNumber( n - 1) at fib.g:7 called from
fibonacciNumber( n - 1) at fib.g:7 called from
fibonacciNumber( n - 1) at fib.g:7 called from

.. at *stdin*:9
you may 'return;’
brk> n;
-5003

brk>
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Let us call Error(...) directly if the input is not valid:
fibv2.g:

fibonacciNumber:=function(n)

if n < 0 then

Error("this function does not work for negative numbers');

fi;

if n = 0 then

return 0;

elif n = 1 then

return 1;

else

return fibonacciNumber(n-1) + fibonacciNumber(n-2);

fi;

end;;
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gap> Read("fibv2.g");

gap> fibonacciNumber(-5);

Error, this function does not work for negative numbers at
fibv2.g:3 called from

<function "fibonacciNumber">( <arguments> )

called from read-eval loop at *stdin*:110

you can ’quit;’ to quit to outer loop, or

you can ’'return;’ to continue

brk>
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Write functions, that accomplish the following. Also test them for a sensible
number of inputs, so that the correctness is somewhat ensured.
Easy
- The Wythoff function, i.e. a generalisation of the Fibonacci function
where the starting integers can be freely chosen
-* Compute the greatest common divisor by using the Euclidean algorithm
- A FizzBuzz function, i.e. takes an integer n as input and returns a list
with n entries, where entry i is
(i) FizzBuzz if i is divisible by 3 and 5
(ii) Fizz if ¢ is divisible by 3
(iii) Buzz if i is divisible by 5
(iv) ¢ if none of the above are true
- A palindrome checker, i.e. for an input string if the reverse of that string
is the same.
Intermediate
- A function that solves the word problem in Z/nZ for a given integer n
and list of generators. E.g. find a word (a;)1<i<x € {3,5} such that
((Z;“:l a,) mod n) =t for a provided target t.
-* A function which computes the sign of a given permutation, which is of
type permutation.
* These functions do have built in equivalents, which can be used to check
whether your function works as expected.

Exercise 1b
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