Getting started in GAP
GAPDays Summer 2025

Meike Weiss and Lukas Schnelle

August 2025

Basics Exercise la Programming
000000000000 o 000000000

Minicourse 1

1. Getting started
a) Basic Basics
b) Basic Programming

2. Programming in GAP: Working on problems from
scratch

3. GAP Packages and Libraries: Using existing GAP
infrastructure

Lectures and Exercises:

Exercise 1b
o]

Basics Exercise la Programming Exercise 1b
000000000000 o 000000000 o

What is GAP?

- GAP stands for Groups, Algorithms and Programming

- System for computational discrete algebra

Basics Exercise la Programming Exercise 1b
000000000000 o 000000000 o

What is GAP?

- GAP stands for Groups, Algorithms and Programming

- System for computational discrete algebra

Why use GAP?

Basics Exercise la Programming Exercise 1b
000000000000 o 000000000 o

What is GAP?

- GAP stands for Groups, Algorithms and Programming

- System for computational discrete algebra

Why use GAP?
Programming Language:
- Open-source
- Interactive use and scripting

- Garbage collecter
- Break loop (for debugging)

Basics Exercise la Programming Exercise 1b
900000000000 o] 000000000 o]

What is GAP?

- GAP stands for Groups, Algorithms and Programming

- System for computational discrete algebra

Why use GAP?
Programming Language:
- Open-source
- Interactive use and scripting

- Garbage collecter
- Break loop (for debugging)
Mathematical capabilities:
- Large library of implementations of various algebraic
algorithms
- Databases of groups, character tables and much more
- Separate packages of additional functions

Basics Exercise la Programming Exercise 1b
080000000000 o 000000000 o

Installing GAP

- Awailable for Linux, macOs and Windows
- Installation guide on the GAP website

https://www.gap-system.org/install/
- Ask for help!

https://www.gap-system.org/install/

Basics Exercise la Programming Exercise 1b
00@000000000 o 000000000 o

GAP Session

Start GAP Session:

:~$ gap

GAP 4.14.0 of 2024-12-85

https://www.gap-system.org

Architecture: x86_64-pc-linux—gnu-default6U-kv9o

Configuration: gmp 6.2.0, GASMAN, readline

Loading the library and packages ...

Packages: AtlasRep 2.1.9, AttributeScheduler 0.1, AutoDoc 2023.06.19, Browse 1.8.21,
CTblLib 1.3.9, datastructures ©.3.1, Digraphs 1.10.0, FactInt 1.6.3, FGA 1.5.9,
Forms 1.2.12, GAPDoc 1.6.7, genss 1.6.9, GRAPE 4.9.2, 10 4.9.1,
NautyTracesInterface 0.3, orb 4.9.1, PrimGrp 3.4.4, recog 1.4.3,
SimplicialSurfaces 0.7, SmallGrp 1.5.d, SpinSym 1.5.2, StandardFF 1.0,
TomLib 1.2.11, TransGrp 3.6.5, utils 0.85

Try |'??help' for help. See also '?copyright', '?cite' and 'Zauthors'

gap>

End GAP Session:
gap> quit;

Basics Exercise la Programming
000800000000 o 000000000

Documentation

- includes a first introduction

- includes complete descriptions and
examples of all functions

- Use 7 to access documentation related to specific
commands in a GAP session

gap> 7CyclicGroup;
gap> ?SymmetricGroup;

Exercise 1b
o]

https://docs.gap-system.org/doc/tut/chap0_mj.html
https://docs.gap-system.org/doc/ref/chap0_mj.html

Basics Exercise la Programming Exercise 1b
00000000000 o 000000000 o

Syntax

- Every command should end with a semicolon ; (or ;; if

the output should not be printed)

- Use := for assignments of variables
gap> 1 + 1;
2
gap> x := 1 + 1;;
gap> X;

2

Basics Exercise la Programming Exercise 1b
000008000000 o 000000000 o

Standard Arithmetic: + , -, *, /, °, mod

Comparison Operators: =, <>, <, >, < >

Booleans: true , false

Basics Exercise la Programming Exercise 1b
000000e00000 o 000000000 o

Lists

- Collection of elements (numbers, list or other objects)

- List can contain different types of elements (but not a good
practice)

Index starts from 1

More functionalities in the documentation

Basics Exercise la Programming Exercise 1b
000000e00000 o 000000000 o

Lists

- Collection of elements (numbers, list or other objects)

- List can contain different types of elements (but not a good
practice)

Index starts from 1

More functionalities in the documentation

gap> L := [4, 1, 3];;
gap> L[1];
4

Basics Exercise la Programming Exercise 1b
000000e00000 o 000000000 o

Lists

- Collection of elements (numbers, list or other objects)

- List can contain different types of elements (but not a good
practice)

Index starts from 1

More functionalities in the documentation

gap> L := [4, 1, 3];;
gap> L[1];
4

— Sets are lists without repetitions

gap> M := [1..3];;

gap> M := [1..3];;
gap> M([2];

Basics Exercise la Programming Exercise 1b
000000080000 o 000000000 o

Lists

gap> M := [1..3];;
gap> M([2];

2

gap> M[1] := 4;;
gap> M;

(4,2, 3]

Basics Exercise la Programming Exercise 1b
000000080000 o 000000000 o

Lists

gap> M := [1..3];;
gap> M[2];

2

gap> M[1] := 4;;
gap> M;

(4,2, 3]

gap> Add(M,8);
gap> M;

(4,2, 3, 8]

Basics Exercise la Programming Exercise 1b
000000080000 o 000000000 o

Lists

gap> M := [1..3];;
gap> M([2];

2

gap> M[1] := 4;;
gap> M;

(4,2, 3]

gap> Add(M,8);
gap> M;

[4, 2, 3, 8]

gap> Remove(M,1);
4

gap> M;

[2, 3, 8]

Basics Exercise la Programming Exercise 1b
0000000e0000 o] 000000000 o]

Lists

gap> M := [1..3];;
gap> M([2];

2

gap> M[1] := 4;;
gap> M;

(4,2, 3]

gap> Add(M,8);
gap> M;

[4, 2, 3, 8]

gap> Remove(M,1);
4

gap> M;

[2, 3, 8]

gap> Maximum(M);
8

Basics Exercise la Programming Exercise 1b
000000008000 o 000000000 o

Copy of List

Use ShallowCopy to make a copy that can be modified

without changing the original

gap> L := [4, 1, 3];

Basics Exercise la Programming Exercise 1b
000000008000 o 000000000 o

Copy of List

Use ShallowCopy to make a copy that can be modified

without changing the original

gap> L := [4, 1, 3];

gap> M = L;;
gap> Add(M,6);;
gap> L;

(4,1, 3, 6]

Basics Exercise la Programming Exercise 1b
000000008000 o] 000000000 o]

Copy of List

Use ShallowCopy to make a copy that can be modified

without changing the original

gap> L := [4, 1, 3];

gap> M = L;;
gap> Add(M,6);;
gap> L

(4,1, 3, 6]

gap> N := ShallowCopy(L);;
gap> Add(N,6);;

gap> L;

[4, 1, 3]

Different options: for, while or repeat loop

Different options: for, while or repeat loop

gap> for iin [1..2] do
> Print(i°2,"\n");

> od;

1

4

Basics Exercise la Programming Exercise 1b
000000000800 o 000000000 o

Loops

Different options: for, while or repeat loop
gap> for iin [1..2] do

> Print(i"2,"\n");

> od;

1

4

gap> i := 1;;

gap> while i <= 2 do
> Print(i"2,"\n");
>i=1i+4 1;

> od;

1

4

Basics Exercise la Programming Exercise 1b
000000000800 o 000000000 o

Loops

Different options: for, while or repeat loop
gap> for iin [1..2] do

> Print(i"2,"\n");

> od;

1

4

gap> i := 1;;

gap> while i <= 2 do
> Print(i"2,"\n");
>i=1i+4 1;

> od;

1

4

— break, continue and return to exit a loop earlier

Basics Exercise la Programming Exercise 1b
000000000080 o 000000000 o

Conditional Statements

gap> n = T;;

gap> if n mod 2 = 0 then
> Print("Even");

> else

> Print("Odd");

Odd

> fi;

Basics Exercise la Programming Exercise 1b
000000000080 o 000000000 o

Conditional Statements

gap> n = T;;

gap> if n mod 2 = 0 then
> Print("Even");

> else

> Print("Odd");

Odd

> fi;

— Use elif for else if statement

Basics Exercise la Programming Exercise 1b
00000000000 e o 000000000 o

Read Files

- Often helpful to write commands or function in files
- .g is common file type for GAP code

- Instead of writing in the terminal, read these files

Basics Exercise la Programming Exercise 1b
00000000000 e o 000000000 o

Read Files

- Often helpful to write commands or function in files
- .g is common file type for GAP code

- Instead of writing in the terminal, read these files

gap> Read("FirstSquares.g");

Basics Exercise la Programming
000000000000 ° 000000000

a) Consider one of the provided files (https://github.com/MeikeWeiss/
GAP-Days2025-Intro/tree/master/Exercisel/Exercisela), read the
code and find the (syntax) errors by loading it in your GAP session.

- FirstSquares
- Factorial
- Signum
- SortList
b) Lists:

- Compute the sum of the first 100 numbers using a for (and while) loop.
- Define a list of integers and compute the list consisting of their squares.

Try do to this just by using one command.

- Define a list of integers and compute the sublist consisting of those that
are even. Try do to this just by using one command.

¢) Groups:

- Let G be the group generated by
(1,2,3,4),(5,6,7,8),(1,5)(2,6)(3,7)(4,8). Compute the order of G and
show that G is not abelian. Additionally, compute the center of G and
show that it is a cyclic group of order four and that it has index 8.

Given a set S of elements in a given group, compute a smaller subset
consisting of S-conjugate representatives (within S). (Intermediate)
More exercises can be found here
https://www.ilariacolazzo.info/gap/tutorials/sheet2/.

d) Matrices:

- Create a square matrix M and a vector v and compute M * v and v * M.

- Determine the determinant, the eigenvalues and the eigenvectors.

Exercise 1b
o

https://github.com/MeikeWeiss/GAP-Days2025-Intro/tree/master/Exercise1/Exercise1a
https://github.com/MeikeWeiss/GAP-Days2025-Intro/tree/master/Exercise1/Exercise1a

Named parts of code, that can be easily reused. They can have
inputs for use in the function.

Basics Exercise la Programming Exercise 1b
000000000000 o 000000000 o

Functions

Named parts of code, that can be easily reused. They can have
inputs for use in the function.

gap> timesThree:=function(x)
> return 3*x;
> end;;

Basics Exercise la Programming Exercise 1b
000000000000 o 000000000 o

Functions

Named parts of code, that can be easily reused. They can have
inputs for use in the function.

gap> timesThree:=function(x)
> return 3*x;

> end;;

gap> timesThree(5);

15

Basics Exercise la Programming
000000000000 o 0@0000000

Often helpful when loading functions from files.
percentage.g:

plusTenPercent := function(x)
return x*(1.1);
end;;

Exercise 1b
o]

Basics Exercise la Programming Exercise 1b
000000000000 o 0@0000000 o

Often helpful when loading functions from files.
percentage.g:

plusTenPercent := function(x)
return x*(1.1);

end;;

plusPercent := function(x, y)
local decimal;

decimal := (1+(y/100));
return x*decimal;

end;;

Basics Exercise la Programming Exercise 1b
000000000000 o 0@0000000 o

Often helpful when loading functions from files.
percentage.g:

plusTenPercent := function(x)
return x*(1.1);

end;;

plusPercent := function(x, y)
local decimal;

decimal := (1+(y/100));
return x*decimal;

end;;

Then in GAP:
gap> Read("percentage.g");
gap> plusTenPercent(15);
16.5
gap> plusPercent(15, 5);
63/4

Basics Exercise la Programming Exercise 1b
000000000000 o 00000000 o

Fibonacci Sequence

Let us write a function, that computes a given element in the
Fibonacci sequence. fib.g:

fibonacciNumber:=function(n)

if n = 0 then

return 0;

elif n = 1 then

return 1;

else

return fibonacciNumber(n-1) + fibonacciNumber (n-2);
fi;

end;;

Basics Exercise la Programming Exercise 1b
000000000000 o 000@00000 o

Now let us run this code:
gap> Read("fib.g");
gap> fibonacciNumber(5);
)
gap> fibonacciNumber(12);
144

Basics Exercise la Programming Exercise 1b
000000000000 o 0000@0000 o

What happens for other numbers?

gap> fibonacciNumber(-5);
Error, recursion depth trap (5000) in
fibonacciNumber(n - 1) at fib.g:7 called from

fibonacciNumber(n - 1) at fib.g:7 called from
fibonacciNumber(n - 1) at fib.g:7 called from
fibonacciNumber(n - 1) at fib.g:7 called from
fibonacciNumber(n - 1) at fib.g:7 called from
fibonacciNumber(n - 1) at fib.g:7 called from

.. at *stdin*:9
you may 'return;’
brk>

Basics Exercise 1b
o]

Exercise la Programming
000000000000 o

000008000

Break loop

Opens when the code encouters an error.

Sometimes can be continued (by typing return;) and
sometimes not.
Allows interaction with the variables at the current state.

Can be called manually with Error("text to show");

Basics Exercise la Programming Exercise 1b
000000000000 o 000000800 o

Let us consider the example from before:

gap> fibonacciNumber(-5);
Error, recursion depth trap (5000) in
fibonacciNumber(n - 1) at fib.g:7 called from

fibonacciNumber(n - 1) at fib.g:7 called from
fibonacciNumber(n - 1) at fib.g:7 called from
fibonacciNumber(n - 1) at fib.g:7 called from
fibonacciNumber(n - 1) at fib.g:7 called from
fibonacciNumber(n - 1) at fib.g:7 called from

.. at *stdin*:9
you may 'return;’
brk> n;
-5003

brk>

Basics Exercise la Programming Exercise 1b
000000000000 o 000000080 o

Let us call Error(...) directly if the input is not valid:
fibv2.g:

fibonacciNumber:=function(n)

if n < 0 then

Error("this function does not work for negative numbers');

fi;

if n = 0 then

return 0;

elif n = 1 then

return 1;

else

return fibonacciNumber(n-1) + fibonacciNumber(n-2);

fi;

end;;

Basics Exercise la Programming Exercise 1b
000000000000 o 00000000e o

gap> Read("fibv2.g");

gap> fibonacciNumber(-5);

Error, this function does not work for negative numbers at
fibv2.g:3 called from

<function "fibonacciNumber">(<arguments>)

called from read-eval loop at *stdin*:110

you can ’quit;’ to quit to outer loop, or

you can ’'return;’ to continue

brk>

Basics Exercise la Programming
000000000000 o] 000000000

Write functions, that accomplish the following. Also test them for a sensible
number of inputs, so that the correctness is somewhat ensured.
Easy
- The Wythoff function, i.e. a generalisation of the Fibonacci function
where the starting integers can be freely chosen
-* Compute the greatest common divisor by using the Euclidean algorithm
- A FizzBuzz function, i.e. takes an integer n as input and returns a list
with n entries, where entry i is
(i) FizzBuzz if i is divisible by 3 and 5
(ii) Fizz if ¢ is divisible by 3
(iii) Buzz if i is divisible by 5
(iv) ¢ if none of the above are true
- A palindrome checker, i.e. for an input string if the reverse of that string
is the same.
Intermediate
- A function that solves the word problem in Z/nZ for a given integer n
and list of generators. E.g. find a word (a;)1<i<x € {3,5} such that
((Z;“:l a,) mod n) =t for a provided target t.
-* A function which computes the sign of a given permutation, which is of
type permutation.
* These functions do have built in equivalents, which can be used to check
whether your function works as expected.

Exercise 1b
L]

	Basics
	Exercise 1a
	Programming
	Exercise 1b

