
Digraphs Package in GAP — Overview

J. D. Mitchell

August 25, 2025

J. D. Mitchell Digraphs minicourse 1 / 30

Contents
1 What is Digraphs?
2 Why Digraphs?
3 Design principles
4 Definition of a digraph
5 How digraphs are represented
6 Features

Mutable versus immutable
New graphs from old
Properties + Attributes
Serialisation
Visualisation

7 Live coding
Live coding — part 1
Live coding — part 2

8 A number of ways I’ve used Digraphs in research
Minimum size generating sets for boolean matrix monoids

J. D. Mitchell Digraphs minicourse 2 / 30

What is Digraphs? 1/3
Overview

Digraphs is an add-on package for GAP that extends GAP’s core
capabilities so you can create, manipulate, and study directed graphs
(digraphs); graphs; and multidigraphs.

In short:
★ GAP is mainly a computational algebra system, but it does not have

any built-in graph theory tools.
★ Digraphs fills that gap (!) by adding a comprehensive set of data

structures and algorithms for digraphs.
★ It is designed to work well with GAP’s group-theoretic functionality, so

you can combine graph theory and algebraic computations.

J. D. Mitchell Digraphs minicourse 3 / 30

What is Digraphs? 2/3
Package structure

Digraphs (GAP)

GAP kernel extension (C)

bliss (C++) libplanarity (C)

D := Digraph([[], [1], [2], [2]]);
SetDigraphVertexLabels(D,
["Digraphs (GAP)",
"GAP kernel extension (C)",
"bliss (C++)",
"libplanarity (C)"]);

gv := GraphvizVertexLabelledDigraph(D);
GraphvizSetAttr(gv, "node [shape=box]");
GraphvizSetAttr(gv, "rankdir", "BT");

★ Digraphs: GAP code of the Digraphs package
★ Kernel extension: C code for

✩ performance critical functions
✩ interface with 3rd party libraries

J. D. Mitchell Digraphs minicourse 4 / 30

What is Digraphs? 3/3
Third party libraries

Tommi Junttila and Petteri Kaski.
Engineering an efficient canonical labeling tool for large and sparse
graphs.
DOI: 10.1137/1.9781611972870.13.

Tommi Junttila and Petteri Kaski.
Conflict propagation and component recursion for canonical labeling.
DOI: 10.1007/978-3-642-19754-3_16.

John Boyer.
Edge-Addition Planarity Suite.
Available at https://github.com/graph-algorithms/
edge-addition-planarity-suite.

J. D. Mitchell Digraphs minicourse 5 / 30

https://doi.org/10.1137/1.9781611972870.13
https://doi.org/10.1007/978-3-642-19754-3_16
https://github.com/graph-algorithms/edge-addition-planarity-suite
https://github.com/graph-algorithms/edge-addition-planarity-suite

What is Digraphs? 4/3
History

★ First commit: 24th September 2014, 14:34:12
★ “Quick exercise to practice writing C code in GAP” JDM (2014)
★ Today: ∼106,447 lines of code, ∼2,824 total commits
★ Original authors:

✩ Jan De Beule
✩ Julius Jonusas
✩ James Mitchell
✩ Michael Torpey
✩ Wilfred Wilson

★ Today: 38 additional contributors (many from St Andrews, some from
Aachen, York, Kaiserslautern-Landau, and elsewhere).

J. D. Mitchell Digraphs minicourse 6 / 30

Commit messages

J. D. Mitchell Digraphs minicourse 7 / 30

More commit messages

Bad spelling award: Wilf Wilson
★ “Making **borbits** as slow as possible. WW”
★ “Remove last **vestigates** of US "Color" spelling variant”
★ “examples.gi: fix the method **strongs** (oops)”
★ “Fixing tests since I’ve solved the **troulbe**. WW”
★ “Fixing Dot functions to display **siolated** vertices. WW”

Unhelpful commit message award: James Mitchell
★ “added forgotted oper.xml”
★ “oops”
★ “dunno”
★ “merg” ’
★ “stuf” ’

J. D. Mitchell Digraphs minicourse 8 / 30

Why Digraphs?

★ “Quick exercise to practise writing C code in GAP” JDM (2014) for
Michael Young and Wilf Wilson who had just started their PhDs

★ Required a more structured approach to digraphs in Semigroups GAP
package (Cayley graphs, partial orders, counting ideals, and so on)

★ Being an impatient type, JDM found the learning curve required to
use Grape too steep (sorry Leonard!)

J. D. Mitchell Digraphs minicourse 9 / 30

Design principles

We wanted Digraphs to be:
★ easy to use ?
★ hard to misuse ?
★ fast ✓

★ feature rich ✓

★ high quality error messages ?
★ well-documented ✓

★ highly collaborative ✓

★ interoperable with Grape ✓

J. D. Mitchell Digraphs minicourse 10 / 30

Definition of a digraph

Digraphs in Digraphs can have loops, and multiple-edges.
D := Digraph([[], [1], [2,2,3], [2]]);

1

2

3 4

J. D. Mitchell Digraphs minicourse 11 / 30

How digraphs are represented

The only representation of digraphs in Digraphs is by out-neighbours!

The vertices are always [1 .. n] for some n ≥ 0 and underneath the
digraph is stored as a list of lists of vertices.

D := Digraph([[], [1], [2,2,3], [2]]);

Every digraph belongs to the representation
IsDigraphByOutNeighboursRep but other representations are possible.

J. D. Mitchell Digraphs minicourse 12 / 30

Constructing digraphs
Range and source

gap> D := Digraph([1, 2, 3, 4], [2, 3, 4], [1, 2, 2]);
<immutable digraph with 4 vertices, 3 edges>
gap> OutNeighbours(D);
[[], [1], [2], [2]]

1

2

3 4

J. D. Mitchell Digraphs minicourse 13 / 30

Constructing digraphs
Range and source

gap> D := Digraph(["a", "b", "c", "d"],
> ["b", "c", "d"],
> ["a", "b", "b"]);
<immutable digraph with 4 vertices, 3 edges>
gap> DigraphVertexLabels(D);
["a", "b", "c", "d"]

a

b

c d

J. D. Mitchell Digraphs minicourse 14 / 30

Constructing digraphs
Adjacency function

gap> D := Digraph(Combinations([1 .. 5], 2),
> {x, y} -> Intersection(x, y) = []);
<immutable digraph with 10 vertices, 30 edges>

[1, 2]

[1, 3]

[1, 4]

[1, 5]

[2, 3]

[2, 4]
[2, 5]

[3, 4]

[3, 5]

[4, 5]

J. D. Mitchell Digraphs minicourse 15 / 30

Constructing digraphs
Grape

gap> G := Graph(SymmetricGroup(5), [[1, 2]], OnSets,
> {x, y} -> Intersection(x, y) = []);
..
gap> D := Digraph(G);
<immutable digraph with 10 vertices, 30 edges>

[1, 2]

[2, 3]

[3, 4]

[1, 3]

[4, 5]

[2, 4]

[1, 5]

[3, 5][1, 4][2, 5]

J. D. Mitchell Digraphs minicourse 16 / 30

Constructing digraphs
By name

gap> ListNamedDigraphs("petersen");
["petersen", ..]
gap> D := Digraph("petersen"); # or PetersenGraph();
<immutable digraph with 10 vertices, 30 edges>

1

2

3

4

5

6

7

8

9

10

J. D. Mitchell Digraphs minicourse 17 / 30

Constructing digraphs
Other ways

★ DigraphByAdjacencyMatrix([[0, 0, 0, 0],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0]])

★ DigraphByEdges([[2, 1], [3, 2], [4, 2]])

★ EdgeOrbitsDigraph

★ DigraphByInNeighbours

★ CayleyDigraph

★ ReadDigraph (more later)

★ RandomDigraph

J. D. Mitchell Digraphs minicourse 18 / 30

Mutable versus immutable
It seemed to happen often that we create a digraph and immediately want
to change it:

gap> D := NullDigraph(10 ^ 8);
<immutable empty digraph with 100000000 vertices>
gap> time;
12813
gap> DigraphAddEdge(D, 1, 2);;
gap> time;
9041
gap> D := NullDigraph(IsMutable, 10 ^ 8);
<mutable empty digraph with 100000000 vertices>
gap> time;
11020
gap> DigraphAddEdge(D, 1, 2);
<mutable digraph with 100000000 vertices, 1 edge>
gap> time;
241

J. D. Mitchell Digraphs minicourse 19 / 30

Mutable versus immutable

Almost every function in Digraphs that returns a digraph has the optional
1st argument IsMutable or IsImmutableDigraph, which specifies the
mutability of the output.

Most functions that modify a mutable digraph will do so in-place (without
copying it). Some care is required!

The manual entry for the function should clearly specify what happens in
regard of mutability.

Why not always mutable?

Workflow:
★ create a mutable digraph
★ modify it until it has the desired properties
★ call MakeImmutable

J. D. Mitchell Digraphs minicourse 20 / 30

New graphs from old

There are at least 48 different functions in Digraphs for forming new
graphs from old ones:

★ copying, adding/removing edges, or vertices
★ subdigraphs, quotients, homomorphisms
★ spanning trees; and forests
★ reversing the direction of edges, duals
★ closures (symmetric, transitive, reflexive)
★ reductions (remove isolated vertices, and so on)
★ products (disjoint union, edge union, join, cartesian, direct, and so on)
★ line, double, bipartite double, distance digraph, the Mycielskian, and

so on
★ matchings, maximal matchings,

J. D. Mitchell Digraphs minicourse 21 / 30

Properties + Attributes

There are more than 100 properties and attributes implemented for
digraphs and graphs in Digraphs:

★ vertices and edges, edge weights
★ neighbours and degree
★ reachability, connectivity, cycles, circuits
★ planarity
★ hashing
★ homomorphisms, chromatic number
★ clique and independent sets.

J. D. Mitchell Digraphs minicourse 22 / 30

Serialisation
There are a fairly large number of different functions for serialisation into
different formats including:

★ graph6, sparse6, digraph6, disparse6 from nauty

★ plain text (you define the deserialisation function, lots of defaults
implemented)

★ pickled files (GAP specific)
★ DIMACs
★ dreadnaut

The function WriteDigraphs attempts to write a list of digraphs to a file
using its best guess at what format to use.

If you Print a digraph, then you’ll get the shortest string it can:
gap> D := Digraph("moserspindle");;
gap> Print(D);
DigraphFromGraph6String("F`o~_")

J. D. Mitchell Digraphs minicourse 23 / 30

Visualisation

In the current released version of Digraphs, there are a number of
functions for creating graphviz representations of digraphs:

★ DotDigraph

★ DotVertexLabelledDigraph

★ . . .

This is not very flexible, so we made a new package called graphviz,
mostly written by Matthew Pancer, which isn’t yet complete:
D := Digraph([[], [1], [2], [2]]);
SetDigraphVertexLabels(D,
["Digraphs (GAP)",
"GAP kernel extension (C)",
"bliss (C++)",
"libplanarity (C)"]);

gv := GraphvizVertexLabelledDigraph(D);
GraphvizSetAttr(gv, "node [shape=box]");
GraphvizSetAttr(gv, "rankdir", "BT");

J. D. Mitchell Digraphs minicourse 24 / 30

Live coding — part 1

What would you like to see how to do?

One task for tomorrow’s first session is to think of something that you’d
like to know how to do, and to tell me then.

J. D. Mitchell Digraphs minicourse 25 / 30

Live coding — part 2

What would you like to see how to do?

J. D. Mitchell Digraphs minicourse 26 / 30

J. D. Mitchell Digraphs minicourse 27 / 30

The boolean semiring

Let B denote the boolean semiring:

⊕ 0 1
0 0 1
1 1 1

⊗ 0 1
0 0 0
1 0 1

and let Mn(B) denote the monoid of all n × n matrices over B.

Clearly |Mn(B)| = 2n
2
, grows rather quickly.

J. D. Mitchell Digraphs minicourse 28 / 30

Minimum size generating sets?
If X ⊆ Mn(B), then we write

⟨X ⟩ = {x1 · · · xn | xi ∈ X , n ∈ N} ≤ Mn(B).

Question: What is d(Mn(B))min |X | such that ⟨X ⟩ = Mn(B)?

n d(Mn(B))
1 *2
2 *3
3 *5
4 *7
5 *13
6 68
7 2 142
8 459 153
9 ?

J. D. Mitchell Digraphs minicourse 29 / 30

Overview

Theorem (Devadze ’68, Konieczny ’11)

Every minimum size generating set for Mn(B) contains 4 specific matrices,
and one representative of every prime J -class.

If P denotes any set of representatives of prime matrices, then we:

★ compute a set Qn of matrices containing such a set P ;

★ if A,B ∈ Qn and the row space row(A) of A embeds into row(B),
then A ̸∈ P .

J. D. Mitchell Digraphs minicourse 30 / 30

	What is Digraphs?
	Why Digraphs?
	Design principles
	Definition of a digraph
	How digraphs are represented
	Features
	Mutable versus immutable
	New graphs from old
	Properties + Attributes
	Serialisation
	Visualisation

	Live coding
	Live coding — part 1
	Live coding — part 2

	A number of ways I've used Digraphs in research
	Minimum size generating sets for boolean matrix monoids

