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Polycyclic groups

Definition

A group G is polycyclic if it has a subnormal series

G = G1 �G2 � . . .�Gn �Gn+1 = {1}

whose quotients Gi/Gi+1 are cyclic for 1 ≤ i ≤ n.

First comments

The quotient Gi/Gi+1 can be finite cyclic or infinite cyclic.

Example: Each finite solvable group is polycyclic.

Example: Space groups with solvable point groups are polycyclic.

Example: Each finitely generated nilpotent group is polycyclic.
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Polycyclic generating sets

Polycyclic generating sets

Let G be polycyclic with series G = G1 � . . .�Gn+1.

Choose gi ∈ G with Gi = 〈gi, Gi+1〉.

Then G = (g1, . . . , gn) is a polycyclic generating set (Pcgs) for G.

Note that Gi = 〈gi, . . . , gn〉 holds.

Let ri = [Gi : Gi+1].

Then (r1, . . . , rn) are the relative orders associated with G.

Note that |G| = r1 · · · rn (finite or infinite).
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Easy applications

Easy applications

Let G = (g1, . . . , gn) be a pcgs for G with relative orders (r1, . . . , rn).

Each g ∈ G can be written uniquely as

g = ge11 · · · genn

with ei ∈ Z and ei ∈ {0, . . . , ri − 1} if ri <∞.

This is the normal form of g.

We call exp(g) = (e1, . . . , en) the exponent vector of g.

If d is minimal with ed 6= 0, then d = dep(g) is the depth of g.
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Examples

G = S4 is finite solvable, hence polycyclic.

G = D∞ ≤ GL(2,Z) is infinite polycyclic.

The upper unitriangular matrices in GL(n,Z) are finitely
generated nilpotent, hence polycyclic.
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Pcgs to Pc-Presentation

Let G = (g1, . . . , gn) be a pcgs for the finite group G with relative
orders (r1, . . . , rn).

Write exp(grii ) = (ei,1, . . . , ei,n), and

Write exp(g
gj
i ) = (ej,i,1, . . . , ej,i,n) for j < i.

Then G has a presentation on the generators g1, . . . , gn with the
relations

grii = g
ei,i+1

i+1 · · · gei,nn 1 ≤ i ≤ n

gigj = gjg
ej,i,j+1

j+1 · · · gej,i,nn 1 ≤ j < i ≤ n

This is a Pc-presentation for G.
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Pc-presentations II

Comments

Example: S3

Pcgs (g1, g2) = ((1, 2), (1, 2, 3)) with relative orders (2, 3) and
relations

g21 = g32 = 1

g2g1 = g1g
2
2

Note that the relations allow to determine normal forms
(Algorithm collection)

Also infinite polycyclic groups have Pc-presentations
(Example D∞)
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Pc-presentations III

Pc-Presentation to Pcgs

Let F be free on G = (g1, . . . , gn) and let (r1, . . . , rn) ∈ Nn. Let G be
finitely presented on G with relations

grii = g
ei,i+1

i+1 · · · gei,nn 1 ≤ i ≤ n

gigj = gjg
ej,i,j+1

j+1 · · · gej,i,nn 1 ≤ j < i ≤ n

for certain ei,k, ej,i,k ∈ {0, . . . , rk − 1}.

Then G is finite polycyclic with pcgs G.

The relative orders (s1, . . . , sn) of G satisfy si ≤ ri.

It is a consistent Pc-presentation if si = ri for 1 ≤ i ≤ n holds.
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Permutation groups I

Permutation Groups I

gap> G := SymmetricGroup(3);

Sym( [ 1 .. 3 ] )

gap> IsomorphismPcGroup(G);

Pcgs([ (2,3), (1,2,3) ]) -> [ f1, f2 ]

gap> H := Image(last);

Group([ f1, f2 ])

gap> PrintPcpPresentation(PcGroupToPcpGroup(H));

g1^2 = id

g2^3 = id

g2 ^ g1 = g2^2
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Permutation groups II

Permutation Groups II

gap> Elements(G);

[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ]

gap> Elements(H);

[ <identity> of ..., f1, f2, f1*f2, f2^2, f1*f2^2 ]

gap> h := Pcgs(H);

Pcgs([ f1, f2 ])

gap> RelativeOrders(h);

[ 2, 3 ]

gap> w := h[2]*h[1];

f1*f2^2

gap> ExponentsOfPcElement(h,w);

[ 1, 2 ]
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Permutation groups

Permutation Groups

gap> G := SymmetricGroup(100);

Sym( [ 1 .. 100 ] )

gap> Collected(Factors(Size(G)));

[ [2, 97], [3, 48], [5, 24], [7, 16], [11, 9], [13, 7],

[17, 5], [19, 5], [23, 4], [29, 3], [31, 3], [37, 2],

[41, 2], [43, 2], [47, 2], [53, 1], [59, 1], [61, 1],

[67, 1], [71, 1], [73, 1], [79, 1], [83, 1], [89, 1],

[97, 1] ]

gap> H := SylowSubgroup(G, 7);

<permutation group of size 33232930569601 ...>

gap> iso := IsomorphismPcGroup(H);;

gap> U := Image(iso);

<pc group of size 33232930569601 with 16 generators>

gap> RelativeOrders(Pcgs(U));

[ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 ]
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Matrix groups

Matrix Groups

gap> G := GL(4,9);

GL(4,9)

gap> U := SylowSubgroup(G, 3);

<matrix group of size 531441 with 6 generators>

gap> H := Image(IsomorphismPcGroup(U));

Group([f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12])

gap> LowerCentralSeries(H);

[ Group([ f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12 ]),

Group([ f4*f6^2,f5,f8*f11^2,f9*f11*f12,f10,f11*f12^2 ]),

Group([ f8*f11^2, f10 ]),

Group([ <identity> of ... ]) ]
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SmallGroups Library

SmallGroups Library in GAP

gap> ll := AllSmallGroups(8);

[ <pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators>,

<pc group of size 8 with 3 generators> ]

gap> List(ll, StructureDescription);

[ "C8", "C4 x C2", "D8", "Q8", "C2 x C2 x C2" ]

gap> PrintPcpPresentation(PcGroupToPcpGroup(ll[4]));

g1^2 = g3

g2^2 = g3

g3^2 = id

g2 ^ g1 = g2 * g3
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What can one do with Pc-groups?

Algorithms

There are many algorithms available for Pc-groups

Compute centralizers, normalizers and intersections

Compute lower central or derived series

Compute Sylow subgroups, Hall subgroups, Frattini subgroup

Compute maximal subgroups

... and many more
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Effectivity

Note

Algorithms for Pc-groups often proceed by induction

upwards along the defining subnormal series
(example: orbits + stabilizers)

downwards along a normal series with el.-ab. quotients
(example: conjugacy classes + centralizers)
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Some comments

Comments

Finite solvable groups: Pc-groups in GAP

It is assumed that the relative orders are all primes

Infinite polycyclic groups: Pcp-groups in GAP

Arbitrary relative orders allowed.
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Computing Pc-Presentations

Permutation groups: IsomorphismPcGroup

Matrix groups: IsomorphismPcGroup

Fp groups: Quotient algorithms

ANUPQ: finite p-quotients

NQ: arbitrary nilpotent quotients

Bettina Eick Polycyclic groups in GAP



Introduction
GAP Session 1

Algorithms
GAP Session 2

Determining Pc-Presentations

Computing Pc-Presentations

Permutation groups: IsomorphismPcGroup

Matrix groups: IsomorphismPcGroup

Fp groups: Quotient algorithms

ANUPQ: finite p-quotients

NQ: arbitrary nilpotent quotients

Bettina Eick Polycyclic groups in GAP



Introduction
GAP Session 1

Algorithms
GAP Session 2

Determining Pc-Presentations

Computing Pc-Presentations

Permutation groups: IsomorphismPcGroup

Matrix groups: IsomorphismPcGroup

Fp groups: Quotient algorithms

ANUPQ: finite p-quotients

NQ: arbitrary nilpotent quotients

Bettina Eick Polycyclic groups in GAP



Introduction
GAP Session 1

Algorithms
GAP Session 2

Determining Pc-Presentations

Computing Pc-Presentations

Permutation groups: IsomorphismPcGroup

Matrix groups: IsomorphismPcGroup

Fp groups: Quotient algorithms

ANUPQ: finite p-quotients

NQ: arbitrary nilpotent quotients

Bettina Eick Polycyclic groups in GAP



Introduction
GAP Session 1

Algorithms
GAP Session 2

Determining Pc-Presentations

Computing Pc-Presentations

Permutation groups: IsomorphismPcGroup

Matrix groups: IsomorphismPcGroup

Fp groups: Quotient algorithms

ANUPQ: finite p-quotients

NQ: arbitrary nilpotent quotients

Bettina Eick Polycyclic groups in GAP



Introduction
GAP Session 1

Algorithms
GAP Session 2

GAP Session 2

GAP Session 2

Bettina Eick Polycyclic groups in GAP



Introduction
GAP Session 1

Algorithms
GAP Session 2

Example 1

Example 1

gap> gg := [ (2,3)(7,9)(13,14)(19,20)(25,27),

(1,21,26,8)(2,19,25,7)(3,20,27,9)(5,6)(10,11)(16,17)

(23,24)(29,30),

(1,22,26,28,15,12,21,4,3,23,25,30,14,11,20,6,2, 24,

27,29,13,10,19,5)(7,16,9,17)(8,18) ];

gap> G := Group(gg);

gap> IsSolvable(G);

true

gap> H := Image(IsomorphismPcGroup(G));

<pc group of size 48372940800 with 27 generators>

gap> Collected(Factors(Size(H)));

[ [ 2, 15 ], [ 3, 10 ], [ 5, 2 ] ]
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gap> AbelianInvariants(H);

[ 2, 2, 4 ]

gap> DerivedSeries(H);

[ <pc group of size 48372940800 with 27 generators>,

<pc group of size 3023308800 with 23 generators>,

<pc group of size 377913600 with 20 generators>,

<pc group of size 15116544 with 18 generators>,

<pc group of size 59049 with 10 generators>,

Group([ ]) ]

gap> Center(H);

Group([ ])

gap> F := FittingSubgroup(H);

<pc group with 10 generators>

gap> Collected(Factors(Size(F)));

[ [ 3, 10 ] ]
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gap> cc := ConjugacyClasses(H);;

gap> Length(cc);

2079

gap> Set(List(cc, x -> Order(Representative(x))));

[ 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48,

60, 120 ]

gap> MaximalSubgroupClassReps(H);;

gap> List(last, x -> Index(H,x));

[ 2, 2, 2, 2, 2, 2, 2, 25, 256, 59049 ]

gap> List([2,3,5], x -> SylowSubgroup(H,x));;

gap> List(last, IsAbelian);

[ false, true, true ]
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Example 2

IComm := function( a, b, x)

local c, i;

c := a;

for i in [1..x] do

c := Comm(c,b);

od;

return c;

end;
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gap> F := FreeGroup(3);

<free group on the generators [ f1, f2, f3 ]>

gap> f := GeneratorsOfGroup(F);

[ f1, f2, f3 ]

gap> R := [IComm(f[1], f[2], 4),

IComm(f[1], f[3], 4),

IComm(f[2],f[3],4)];;

gap> NilpotentQuotient(F/R, 4);

Pcp-group with orders [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
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gap> Add(R, f[1]^4);

gap> NilpotentQuotient(F/R, 5);

Pcp-group with orders [4,0,0, 4, 4,0, 4, 4, 4, 4, 4, 4,0,

0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,0, 4,0,0, 4,

2, 4, 4, 4, 4, 4,2,2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,0,0, 4, 4, 4, 4,

0,0, 4,0]

gap> Size(TorsionSubgroup(G));

42535295865117307932921825928971026432 # = 2^125

gap> HirschLength(G);

13

gap> G/TorsionSubgroup(G);

Pcp-group with orders [0,0,0,0,0,0,0,0,0,0,0,0,0]
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