Vector Enumeration

Florian Heine, Nicolaus Jacobsen

Vector Enumeration¹

Linear version of the Todd-Coxeter algorithm; by S.A. Linton

Input

For a field K and a finite set of symbols X let $A := K\langle X \rangle$ and $F := A^s$:

- $P := \langle X \mid R \rangle_K$ a finitely presented K-algebra
- $M := \langle e_1, ..., e_s \mid W \rangle$ a finitely presented right P-module

Output

- K-matrix representation of M as K-vectorspace
- monomial K-basis of M

¹S.A. Linton, On vector enumeration, Linear Algebra and its Applications, Volume 192, 1993, Pages 235-248, ISSN 0024-3795

Interface²

```
julia> using AbstractAlgebra, VectorEnumeration
julia> A, (a, b, c) = free associative algebra(GF(7), ["a", "b", "c"])
julia> F = free_module(A, 1)
julia> R = [a^2 - 1, b^2 - 1, c^2 - 1, (a*b)^3 - 1, (a*c)^2 - 1, (b*c)^3 - 1]
julia> W = [F([a*b*c - 1])]
Dimension:
julia> dimension qm(A, F, R, W)
```

²https://ktrompfl.github.io/VectorEnumeration.jl/dev/api/

Matrices:

```
julia> Xa, Xb, Xc = matrices qm(Matrix, A, F, R, W)
julia> Xª
                                 julia> X<sup>b</sup>
                                                                   julia> X<sup>c</sup>
6×6 Matrix{...}:
                                                                  6×6 Matrix{...}:
                                 6×6 Matrix{...}:
    0 0 0 0 0
                                                                    0 0 0 1 0 0
    0 0 1 0 0
                                  0 1 0 0 0 0
    0 \ 1 \ 0 \ 0 \ 0
   0 0 0 0 1
                                                                    \Theta \Theta \Theta \Theta \Theta
    0 \quad 0 \quad 0 \quad 1 \quad 0
                                                                    0 0 0 0 1 0
```

Monomial basis:

```
julia> base_qm(A, F, R, W)
6-element Vector{...}:
  (1), (a), (a*b), (a*b*a), (b), (a*b*a*b)
```

Main Program

Main Program

- relations r are initialized with a weight w_r , e.g. their degree
- basis elements b obtain the weight $w_b \coloneqq w$ of the current iteration

```
\begin{split} w &:= 1 \\ \text{while } w \leq w_{\text{max}}\text{:} \\ \text{if isclosed(...):} \\ w &:= \infty \\ \text{for every relation } r\text{:} \\ \text{for every basis element } b\text{:} \\ \text{if } w_b + w_r \leq w \text{ and } r \text{ was not applied to } b \text{ yet:} \\ \text{process\_relation(} b, r, w\text{)} \\ w &:= w + 1 \end{split}
```

Basis Elements

Every basis element $b_i \in B = \{b_1, \dots, b_n\}$ saves the following data:

- $d_i \in \{\text{true}, \text{false}\}$: b_i deleted / undeleted
- $r_i \in K\{b_j \in B \mid j < i\} \cup \{\bot\}$: replacement, if b_i is deleted
- $p_i \in \langle X \rangle^s$: the monomial image of b_i
- $b_i[x] \in KB \cup \{\bot\}$: Action $b_i.x$ of $x \in X$ on b_i

 $B^u \coloneqq \{b_i \in B \mid d_i = \mathbf{false}\}$ – Set of undeleted basis elements for $x \in X$, $b \in B$ s. th. $b[x] \neq \perp$ define b.x = b[x]

Algorithm

Consider the following input:

```
julia> A, (x,y) = free associative algebra(GF(3), [:x, :y])
julia> R = [x^2 + 2*x + 1, x*y - y*x, y^2 - 1]
julia> F = free module(A, 2)
julia> W = [F([one(A), one(A)])]
• Read in relations:
```

```
\rightarrow found inverse y to generator y
   AlgebraRelation(x^2 + 2x + 2, Weight(3))
   BinomialRelation(1, x*y, 1, y*x, Weight(3))
   DefineRelation(x, Weight(3))
   DefineRelation(y, Weight(3))
```

- Create start basis $B = \{b_1, ..., b_s\}$ mit $p_i := e_i$:
 - → creating the start basis with 2 elements

Algorithm

- Process module relations:
 - \rightarrow processing submodule generator $e_1 + e_2$ at weight 1
- Process relations in the main loop:
 - \rightarrow processing fixing relation $b_1.x^2 + 2*x + 2 = b_1$ at weight 5 processing binomial relation $(1 \cdot b_1).x*y = (1 \cdot b_1).y*x$ at weight 5 verifying $b_1.x$ is defined at weight 5 verifying $b_1.y$ is defined at weight 5
- Create output:
 - → early closing at weight 10 finished with dimension 4 after defining 10 basis elements collecting basis

processing fixing relation $b_1.(x^2 + 2*x + 2) = b_1$ at weight 5

Compute $b_1.(x^2 + 2 \cdot x + 2)$ while defining new basis elements b_3, b_4 , representative for discovered monomials e_1x, e_1x^2 :

• compute $b_1.x^2$:

processing fixing relation $b_1.(x^2 + 2*x + 2) = b_1$ at weight 5

Compute $b_1.(x^2+2\cdot x+2)$ while defining new basis elements b_3,b_4 , representative for discovered monomials e_1x,e_1x^2 :

- compute $b_1.x^2$:
 - define $b_1[x] = b_1.x := b_3$
 - \rightarrow enumerate new basis element b_3

processing fixing relation $b_1.(x^2 + 2*x + 2) = b_1$ at weight 5

Compute $b_1.(x^2 + 2 \cdot x + 2)$ while defining new basis elements b_3, b_4 , representative for discovered monomials e_1x, e_1x^2 :

- compute $b_1.x^2$:
 - define $b_1[x] = b_1.x := b_3$
 - define $b_3[x] = b_3.x := b_4$
 - ightarrow enumerate new basis element b_4

processing fixing relation $b_1.(x^2 + 2*x + 2) = b_1$ at weight 5

Compute $b_1 \cdot (x^2 + 2 \cdot x + 2)$ while defining new basis elements b_3 , b_4 , representative for discovered monomials $e_1 x$, $e_1 x^2$:

- compute $b_1.x^2$:
 - define $b_1[x] = b_1.x := b_3$
 - define $b_3[x] = b_3.x := b_4$ $\Rightarrow b_1.x^2 = b_4$

processing fixing relation $b_1.(x^2 + 2*x + 2) = b_1$ at weight 5

Compute $b_1.(x^2 + 2 \cdot x + 2)$ while defining new basis elements b_3, b_4 , representative for discovered monomials e_1x, e_1x^2 :

• compute $b_1.x^2$:

$$\Rightarrow b_1.x^2 = b_4$$

- compute $b_1.2 \cdot x$:
 - $b_1.x = b_1[x] = b_3$ $\Rightarrow b_1.2 \cdot x = 2b_3$

processing fixing relation $b_1.(x^2 + 2*x + 2) = b_1$ at weight 5

Compute $b_1 \cdot (x^2 + 2 \cdot x + 2)$ while defining new basis elements b_3 , b_4 , representative for discovered monomials $e_1 x$, $e_1 x^2$:

• compute $b_1.x^2$:

$$\Rightarrow b_1.x^2 = b_4$$

• compute $b_1.2 \cdot x$:

$$\Rightarrow b_1.2 \cdot x = 2b_3$$

• compute $b_1.2$:

$$\Rightarrow b_1.2 = 2b_1$$

$$\Rightarrow b_1.(x^2 + 2 \cdot x + 2) = b_4 + 2b_3 + 2b_1$$

processing fixing relation $b_1.(x^2 + 2*x + 2) = b_1$ at weight 5

Solve the equation $b_4 + 2b_3 + 2b_1 = b_1$ for b_4 to replace b_4 :

- solve the equation for b_4 :
 - $\Rightarrow b_4 = 2b_1 + b_3$
- replace and delete b_4 :
 - $\Rightarrow r_4 := 2b_1 + b_3$
 - $\Rightarrow d_4 := \text{true}$

Termination

On terminitation it holds that:

- for all $b \in B^u$ and $x \in X$: $b.x = b[x] \neq \perp$
- for all $b \in B^u$ and $r \in R$: b.r = 0
- for all $w \in W$: $b_1.w_1 + \dots + b_s.w_s = 0$

Benchmarks

Group ³	Order	VectorEnumeration.jl		gap-packages/ve	
		Normal	Lookahead	Normal	Lookahead
$M_{11}^{(1)}$	7920	0.52 s	0.51 s	0.28 s	0.26 s
$M_{11}^{(2)}$	7920	0.51 s	0.47 s	0.38 s	0.31 s
$\mathrm{PSL}_3(4)$	20160	2.34 s	2.52 s	0.51 s	0.43 s
Neu	40320	101.34 s	69.07 s	61.15 s	31.96 s
Weyl B_6	46080	1.35 s	2.85 s	0.64 s	0.81 s

³Cannon, John J., et al. "Implementation and Analysis of the Todd-Coxeter Algorithm." Mathematics of Computation, vol. 27, no. 123, 1973, pp. 463–90.