
Wilf Wilson of the University of St Andrews at GAP Days Winter 2022 on the 21st February 2022

Testing the package distribution
The past and future

• Motivation for automated testing for GAP/packages

• General aims

• Survey of old/existing functionality

• GitHub Actions

• General directions for work this week (and beyond)

Outline

What is automated testing all about?

• Why test?

• Try to ensure GAP/packages work as intended:

• Correctness is particularly important in computational maths!

• Why automate?

• Increase:

• Frequency

• Regularity

• Reliability

• Reduce labour (beware pitfalls!)

• Changes to GAP broken GAP?

• Changes to GAP broken a (released/dev) package?

• Changes to one package broken another package?

• External changes caused trouble?

• New compilers…

• New operating systems (and 32/64-bit)…

• New versions of dependencies…

• All sorts of annoying stuff…

What might we want to test?
Have…

• Useful

• Robust

• Low-effort

• Maintainable

• Portable

‣ Sustainable (money/resources)

• Understandable and visible

• DOCUMENTED!

• Easy for package authors (+everyone) to see status

Important principles for our testing setup

Quick summary of past/present/future tools

Travis: No longer usable (cautionary tale!)

AppVeyor: Windows tests (retired)

Jenkins: Powerful (but private)

GitHub Actions: Fancy new kid on the block

Want: GAP Docker containers
Pre-configured systems for quicker & consistent testing

• Zach Newbery will talk about
this tomorrow morning

• Tasks:

• Update or remove 
https://hub.docker.com/u/gapsystem

• Clean up 
https://github.com/orgs/gap-system/packages

Jenkins
https://jenkins.io

• Open source automation with lots of integrations

• GAP’s installation is https://gap-ci.cs.st-andrews.ac.uk

• Runs on St Andrews hardware: pros and cons

• Only available from within the St Andrews network!

• Therefore currently of limited usefulness

• Vague goal:

• Publicly replicate the desirable/feasible bits of Jenkins 
(i.e. in GitHub Actions). Retire old bits.

GitHub Actions: as powerful as Jenkins?
• GitHub’s new-ish automation solution

• Free for us (for now…). Open source.

• Define tasks dynamically (‘build matrix’, up to 256 jobs)

• My slides from last GAP Days: 
https://www.gapdays.de/gapdays2021-spring/program

• We already use it for:

• Tests on gap-system/gap (load each package; load all and test GAP)

• Tests on GAP package developments repositories

• Wrapping GAP releases

• Building GAP docker images

• Updating the GAP website

The gap-distribution ‘dashboard’ (dead)

• Status of some GAP/package tests.

• Each status corresponds to a repository,
mostly at github.com/gap-infra

• Not ideal? (Lots of code duplication.)

• Vague goal:

• Resurrect the best of the displayed
functionality with GitHub Actions

• Scavenge from the repositories!

• (How to) combine with pkg-dist?

https://github.com/gap-system/gap-distribution

Does GAP

break itself?

Does a package

break GAP?

Does GAP

break a package?

Development versions

of packages

“Package integration tests”: example

GAP branch

• master

• stable-4.11

• stable-4.10

• testinstall

• testbugfix

• teststandard

• all

• default

• required

GAP tests Packages

✕ ✕

gap-infra/gap-docker-master-testsuite

Also:
• master

• stable-4.11

• stable-4.10

✕ • loadpackage ✕
• all

• all (reversed)

• one

• one (only needed)

General directions for work in this area
• Assess what exists at Jenkins & gap-infra

• Decide policy: what do we want (and is feasible)

• Implement stuff in GitHub Actions

• Which tests go on which repos? pkg-dist?

• Take inspiration from existing GitHub Actions setups

• Retire old things we don’t want!

• Document everything transparently:

• Collect the information somewhere obvious (website?!)

• Correct out-of-date information in READMEs etc

Test parameters to decide

• Frequency?

• Which versions of GAP?

• Which versions of packages?

• Which tests?

• Which other settings?

Systems to implement

• Assemble tests to be run

• Code for running tests

• Using Docker containers

• Notify (who? how?) about problems with tests

More specific ideas/desires/questions

• Given a GAP pull request, does this break a package test?

• Do we really want/need LoadAllPackages?

• Have a way of “forgiving” broken package test results?

• Which tests should run on a PR to the pkg-dist repo?

• Include Windows tests as appropriate!

• Encourage “better” tests: avoid fragility w.r.t. ViewString

Thank you! 
 

Further discussion and questions?

