
Working Remote or 
Remotely Working?
GAP Containerization solutions with Docker

Zach Newbery



What is Containerization?

• Packaging of applications and their dependencies into containers.

• Operating System-based virtualization:
• Creates multiple containers (virtual units).

• Share the same host kernel but are isolated from each other.

• Images can be used to create containers.
• Containers are runtime instances of images



Advantages of Containerization

• Containers are able to run virtually anywhere, greatly easy 
development and deployment.

• Containers can run uniformly and consistently on any infrastructure
• Useful for sharing/distributing programs

• Containers are lightweight – they do not require an operating system 
for each (as opposed to Virtual Machines).
• Containers virtualise just the Operating System, whereas VMs virtualise the 

underlying hardware as well.



Introduction to Docker

• Founded in 2013.

• An open-source containerization platform for building, running, and 
managing containers on servers and the cloud.

• Containers are hosted through a software known as Docker Engine.



Using GAP’s Docker Containers

• Pre-compiled containers for a multitude of GAP use cases.

• Stored in GitHub Repositories in the gap-system workspace:
• gap-docker-master
• gap-docker-stable
• gap-docker-stable-4.11
• gap-container
• …

• Can be downloaded and run using Docker Engine:
> echo <GITHUB PERSONAL ACCESS TOKEN> | docker login ghcr.io -u <GITHUB 
USERNAME> --password-stdin
> docker pull ghcr.io/gap-system/gap-docker-master:master
> docker run ghcr.io/gap-system/gap-docker-master:master



Aside: Docker Hub v GHCR.io

• All GAP Container Images used to be stored on Dockerhub.

• But, Dockerhub has switched their storage plans to be more costly

• GHCR.io offers a free alternative:
• Container names are formatted as:

• ghcr.io/owner/image:branch

• Example: ghcr.io/gap-system/gap-docker:main



Creating your own Images

• Images require a Dockerfile so they can be built.
• Can be done easily in a personal GitHub Repository
• Main File Structure Components:

• FROM
• RUN (optional)
• ENV (optional)

• Can be built locally:
> docker build -f Dockerfile .
> docker run <image ID>

• Can use GAPs images as base image if need be.
• Deployment can be automized with the Publish Docker Container GitHub 

Action.



GAP CI with Docker Containers

• Containers can also possibly be used for CI tests for individual packages -
more efficient than compiling GAP each time.

• Jobs can be run within containers:
jobs:

my_job:
container:

image: ghcr.io/owner/image 
credentials: 

username: ${{ github.actor }} 
password: ${{ secrets.github_token }} 

More At: https://docs.github.com/en/actions/using-jobs/running-jobs-in-a-container

https://docs.github.com/en/actions/using-jobs/running-jobs-in-a-container


Deepnote: Collaborative Notebooks

• Similar to Jupyter Notebooks
• But collaborative like Google Docs

• Allows real-time interaction with team mates whilst maintaining an 
Jupyter-like environment.

• Lots of other useful features – input blocks, SQL blocks, integrated 
terminal etc.



GAP in Deepnote

• Currently, there is a pre-compiled container that allows GAP usage in 
Deepnote:
• Hosted under: gap-system/gap-docker-deepnote

• Can be used by adding the image within Deepnote.

• For more information, you can refer to a post I wrote:
• https://community.deepnote.com/c/custom-environments/using-gap-in-

deepnote

https://community.deepnote.com/c/custom-environments/using-gap-in-deepnote

