
SOTGrps—Extending the Small Groups database
GAP Days Summer 2022, RWTH Aachen

Eileen Pan
An MPhil project supervised by Heiko Dietrich



Some known results

Let p, q, r be distinct primes.

• 1893: Hölder determined groups of order p3, p4, p2q, pqr.
• 1893: Cole & Glover determined groups whose orders factorise into three primes.
• 1895: Hölder classified groups of squarefree order.
• 1898: Bagnera determined the groups of order p5.
• 1902: La Vavasseur determined groups of order p2q2.
• 1903: La Vavasseur determined groups of order 16p for odd prime p.
• 1906: Glenn studied groups of order p2qr.
• 1909: Tripp determined groups of order p3q2.
• 1919: Nyhlén determined groups of order 16p2 and 8p3 for odd prime p.
• 1934: Lunn & Senior determined groups of 16p and 32p.
• 1977: Western determined groups of order p3q.
• 1980: James determined the groups of order p6 for odd p.
• 1982: Laue enumerated groups of odd order paqb where a + b ≤ 6 and a, b < 5.
• 1990: Newman & O’Brien derived the p-group generation algorithm.
• 2005: O’Brien & Vaughan-Lee enumerated groups of order p7 for odd p.
• 2005: Dietrich & Eick developed a construction algorithm for cubefree groups.
• 2007: Slattery developed an algorithm for squarefree groups.
• 2017: Eick enumerated groups whose orders factorise into at most four primes.
• 2018: Eick & Moede enumerated groups of order pnq for n ≤ 5.



In the digital era

The Small Groups library contains the following groups:

• those of order at most 2000 except 1024;
• those of cubefree order at most 50 000;
• those of order p7 for the primes p = 3,5,7,11;
• those of order pn for n ≤ 6 and all primes p;
• those of order qn p for qn dividing 28, 36, 55 or 74 and all primes p with p ̸= q;
• those of squarefree order;
• those whose order factorise into at most 3 primes.

For example,
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Groups of small order type—an MPhil project

Motivation

• Vast amount of results are scattered over literature; some papers contain errors.
• It is useful to extend the SmallGroups Library.

Main aims

• Literature review + self-contained overview in a unified, modern language.
• GAP implementations.

Main results

For the groups whose orders factorise into at most 4 primes (or of order p4q), we give

• new determination of groups (explicit group presentations);
• new counting formulas for enumeration;
• new algorithms and GAP implementation for ID-functionality.
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Example: constructing groups of order p2q
Let ∆x

y be the Kronecker divisibility delta: ∆x
y = 1 if x | y and ∆x

y = 0 otherwise.

Groups of order p2q.

PC-relators Parameters Number of groups
Cluster 1: nilpotent
ap2q 1
apq , bp 1
Cluster 2: non-nilpotent, normal C2

p

aq , bp , cp , ba/bρ(p,q) ∆q
p−1

aq , bp , cp , (ba , ca)/(b, c)M2(p,q,σk
q ) 0 ≤ k ≤ ⌊ 1

2 (q − 1)⌋ 1
2 (q + 1 − ∆2

q)∆
q
p−1

aq , bp , cp , (ba , ca)/(b, c)I2(p,q) (1 − ∆2
q)∆

q
p+1

Cluster 3: non-nilpotent, normal Cp2

aq , bp2
, ba/bρ(p2,q) ∆q

p−1

Cluster 4: non-nilpotent, normal Cq with complement C2
p

ap , bp , cq , ca/cρ(q,p) ∆p
q−1

Cluster 5: non-nilpotent, normal Cq with complement Cp2

ap2
, bq , ba/bρ(q,p) ∆p

q−1

ap2
, bq , ba/bρ(q,p2) ∆p2

q−1

For each cluster, construct a “canonically” ordered list of isomorphism types with
polycyclic presentations.
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Example: identifying groups of order p2q

Let H be the permutation group generated by

{(2, 29, 23, 15, 9, 5, 3)(4, 27, 24, 16, 10, 8, 7)(6, 20, 12, 25, 17, 18, 11)(13, 28, 22, 26, 19, 14, 21)

(31, 46, 54, 37, 55, 53, 50)(32, 33, 49, 44, 51, 47, 41)(34, 36, 39, 58, 43, 35, 52)(38, 42, 48, 57, 56, 40, 45)

(1, 21, 12, 6, 3, 15, 9, 13, 7, 23, 16, 17, 10, 5, 25, 27, 19, 11, 24, 18, 28, 20, 29, 26, 22, 14, 8, 4, 2),

(30, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31)}.

1. Determine the order and order type of H: n = |H| = 292·7.

2. Compute a Sylow subgroup for each prime divisor of n: let P ∈ Syl29(H) and Q ∈ Syl7(H).

3. Whether H contains a normal Sylow subgroup: P ⊴ H, so H is a split extension of Q by N.

4. Determine the isomorphism type of P and locate the Cluster: Since P ∼= C2
29, we know that

H is a group in Cluster 2.

5. Compute a polycyclic presentation of H: Choose generators u, v, w ∈ H such that Q = ⟨u⟩,
P = ⟨v, w⟩.

6. Determine the position of H in the corresponding Cluster with respect to the canonical
ordering: We find that u acts on v, w via M =

(
7 0
0 16

)
∈ GL2(29). This matrix has eigenvalues

{7, 16}, and diag(7, 16) = diag(a3, a) with a = ρ(29, 7) = 16. Since ⟨M⟩ is conjugate to
⟨diag(a, a3)⟩ and σ7 = 3, this determines the parameter k = 1 in the canonical form.

7. Determine the group ID: H has ID (292·7, 5).
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A joint work with Dietrich & Eick (2021)
Our enumeration results coincide with those in Eick’s 2017 arXiv paper.



SOTGrps in action
For a group G of order that is SOTGroupIsAvailable, SOTGrps provides the following
functions:

• NumberOfSOTGroups(n).
• AllSOTGroups(n).
• SOTGroup(n, k).
• IdSOTGroup(G).

For example, groups of order 2662 are covered in the dynamic database of SOTGrps.

It constructs groups of order n ∈ O on demand.
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Practical performances and bottlenecks

74844 groups of order p2q, p3q, p2q2, p2qr at most 50000

• Construction. SmallGroups1 27359 secs vs SOTGrps 47 secs
GrpConst2 150 secs vs SOTGrps 0.2 secs

• Identification. SmallGroups 43356 secs vs SOTGrps 259 secs

Groups of order 114·5 = 73205
• Construction. GrpConst 326 secs vs SOTGrps 0.07 secs
• Identification. GrpConst unavailable vs SOTGrps 0.9 secs

In general, we face increasing difficulties when the prime factors become large.

For example,

• arithmetic in polycyclic groups (collection) seems to be slow for large primes;
• we encountered a bug in the LogFFE function along the way.

1Only for those 74562 groups available in SmallGroups.
2Only for the remaining 282 groups unavailable in SmallGroups.
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Thank you!



Background theory and main approach

Well-known results:

• Classification of group extensions; relations between equivalence classes and
2-cohomology groups.

• Classification of strong isomorphism classes of group extensions and compatible
pairs.

• Isomorphism classes of semidirect products (Taunt 1955).
• Finite groups with cyclic Sylow subgroups are solvable.
• For distinct primes p, q, Burnside’s theorem asserts that the finite groups of order

paqb are solvable (1904).
• The odd-order theorem (proved by Feit and Thompson in 1962) states that all

groups of odd order are solvable.

Constructing solvable groups by iterating group extensions

• We construct p-groups of order dividing p4 as extensions with abelian kernels.
• For groups of order paqb we make a case distinction on the existence of normal

Sylow subgroups and further divide the cases by the isomorphism type of Sylow
subgroups.

• For other groups whose orders contains more than two factors, we make a case
distinction on the Fitting subgroups.


