GAP Package - LINS

Low Index Normal Subgroups

Friedrich Rober

18.10.2022

Overview

LINS

$(\underline{L}$ ow \underline{I} ndex \underline{N} ormal \underline{S} ubgroups) provides an algorithm for computing the normal subgroups of a finitely presented group up to some given index bound.

LINS

(<u>L</u>ow <u>I</u>ndex <u>N</u>ormal <u>S</u>ubgroups)

provides an algorithm for computing the normal subgroups of a finitely presented group up to some given index bound.

Future Plans

- Publish the theoretical background (based on work of Derek Holt and David Firth)
- Implement a search for specific normal subgroups

LINS

(<u>L</u>ow <u>I</u>ndex <u>N</u>ormal <u>S</u>ubgroups)

provides an algorithm for computing the normal subgroups of a finitely presented group up to some given index bound.

Future Plans

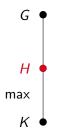
- Publish the theoretical background (based on work of Derek Holt and David Firth)
- Implement a search for specific normal subgroups

Used by some researchers in the area of error correcting codes for quantum computers.

General Approach

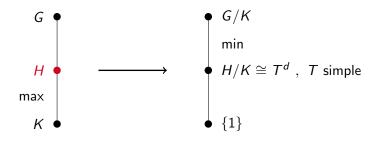
Idea 1: Iteration over computed normal subgroups

```
Let G be a group, and H \leq G.
Search for all maximal G-normal subgroups under H.
```



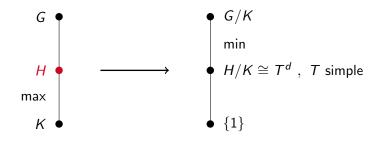
Idea 1: Iteration over computed normal subgroups

Let G be a group, and $H \trianglelefteq G$. Search for all maximal G-normal subgroups under H.



Idea 1: Iteration over computed normal subgroups

Let G be a group, and $H \trianglelefteq G$. Search for all maximal G-normal subgroups under H.



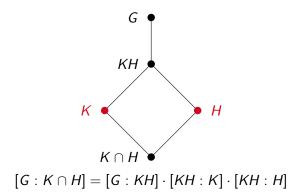
- ▶ *T* abelian \implies *P*-Quotient, *T* \cong *C*_{*p*}
- T non-abelian \implies T-Quotient, CFSG

Idea 2: Reduce the explicit search for quotients

Let G be a group, and $K, H \leq G$. Then $U := K \cap H \leq G$. Do not search for U as a quotient of some supergroup, but rather compute it as an intersection.

Idea 2: Reduce the explicit search for quotients

Let G be a group, and $K, H \leq G$. Then $U := K \cap H \leq G$. Do not search for U as a quotient of some supergroup, but rather compute it as an intersection.



Idea:

- ▶ Only a few *T*-Quotients cannot be computed as intersections.
- ▶ We can find these subgroups as quotients under *G*.
- Use pre-computed list of these quotients and GQuotients.

Idea:

▶ Only a few *T*-Quotients cannot be computed as intersections.

- ▶ We can find these subgroups as quotients under *G*.
- ► Use pre-computed list of these quotients and GQuotients.

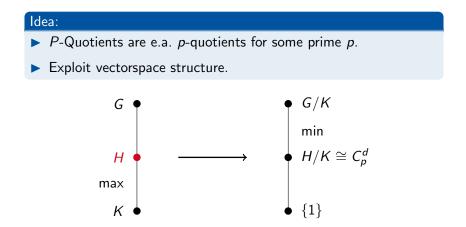
- ▶ T non-abelian
- ► $T^d \cong \operatorname{Inn}(T^d) \le Q \le \operatorname{Aut}(T^d) \cong \operatorname{Aut}(T) \wr \operatorname{Sym}(d)$

• Q acts transitively on socle factors $\{T_1, \ldots, T_d\}$

Idea:

▶ *P*-Quotients are e.a. *p*-quotients for some prime *p*.

Exploit vectorspace structure.



- Technical but cheap checks on p to decide, if p-quotients cannot be computed as intersections (pre-computed Schur-Multipliers of T^d, T non-abelian simple)
- Compute class-1 *p*-quotient under *H*, say *M* (𝔽_{*p*}-submodule ⇐⇒ e.a. *p*-quotient under *H*)
- ► Construct G-action on M via conjugation (𝔽_pG-submodule ⇐⇒ above & G-normal subgroup)
- ▶ Use MeatAxe to compute maximal $\mathbb{F}_p G$ -submodules of M.

Disclaimer:

- Technical but cheap checks on p to decide, if p-quotients cannot be computed as intersections (pre-computed Schur-Multipliers of T^d, T non-abelian simple)
- ► Compute class-1 *p*-quotient under *H*, say *M* (𝔽_{*p*}-submodule ⇐⇒ e.a. *p*-quotient under *H*)
- ► Construct G-action on M via conjugation (𝔽_pG-submodule ⇐⇒ above & G-normal subgroup)
- ▶ Use MeatAxe to compute maximal $\mathbb{F}_p G$ -submodules of M.

Disclaimer:

- Technical but cheap checks on p to decide, if p-quotients cannot be computed as intersections (pre-computed Schur-Multipliers of T^d, T non-abelian simple)
- ► Compute class-1 *p*-quotient under *H*, say *M* (𝔽_{*p*}-submodule ⇐⇒ e.a. *p*-quotient under *H*)
- Construct G-action on M via conjugation (𝑘_pG-submodule ⇐⇒ above & G-normal subgroup)
- ▶ Use MeatAxe to compute maximal $\mathbb{F}_p G$ -submodules of M.

Disclaimer:

- Technical but cheap checks on p to decide, if p-quotients cannot be computed as intersections (pre-computed Schur-Multipliers of T^d, T non-abelian simple)
- ► Compute class-1 *p*-quotient under *H*, say *M* (𝔽_{*p*}-submodule ⇐⇒ e.a. *p*-quotient under *H*)
- ► Construct G-action on M via conjugation (𝔽_pG-submodule ⇐⇒ above & G-normal subgroup)
- Use MeatAxe to compute maximal $\mathbb{F}_p G$ -submodules of M.

Disclaimer:

- Technical but cheap checks on p to decide, if p-quotients cannot be computed as intersections (pre-computed Schur-Multipliers of T^d, T non-abelian simple)
- ► Compute class-1 *p*-quotient under *H*, say *M* (𝔽_{*p*}-submodule ⇐⇒ e.a. *p*-quotient under *H*)
- ► Construct G-action on M via conjugation (𝔽_pG-submodule ⇐⇒ above & G-normal subgroup)
- ▶ Use MeatAxe to compute maximal $\mathbb{F}_p G$ -submodules of M.

Disclaimer:

1

Compute all normal subgroups of

$$G = Alt(5) \times C_2 \times C_3$$

up to index n = 200.

1

Compute all normal subgroups of

 $G = Alt(5) \times C_2 \times C_3$

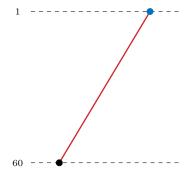
up to index n = 200.

Q	Т
60	Alt(5)
120	Alt(5)
168	PSL(2,7)

Compute all normal subgroups of

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

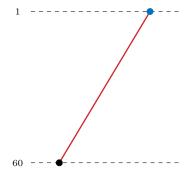


Compute all normal subgroups of

$$G = Alt(5) \times C_2 \times C_3$$

up to index n = 200.

T-Quotients:



Compute all normal subgroups of

 $G = Alt(5) \times C_2 \times C_3$

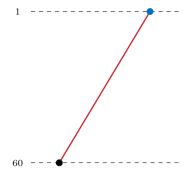
up to index n = 200.

T-Quotients:

Q	Т
60	Alt(5)
120	Alt(5)
168	PSL(2,7)

RWITHAACHEN

ЛŖ



Compute all normal subgroups of

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

P-Quotients:

prime p	Compute?
2	✓
3	\checkmark
5	\checkmark
:	÷

Compute all normal subgroups of

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

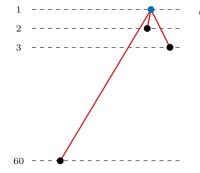
prime p	Compute?
2	✓
3	\checkmark
5	1
÷	÷

Compute all normal subgroups of

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

prime p	Compute?
2	1
3	1
5	1
÷	÷



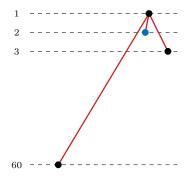
Compute all normal subgroups of

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

P-Quotients:

prime <i>p</i>	Compute?
2	✓
3	1
5	1
:	÷



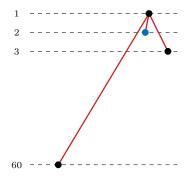
Compute all normal subgroups of

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

P-Quotients:

prime <i>p</i>	Compute?
2	X
3	1
5	1
÷	÷



Compute all normal subgroups of

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

P-Quotients:

prime p	Compute?
2	×
3	1
5	\checkmark
:	÷

Compute all normal subgroups of

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

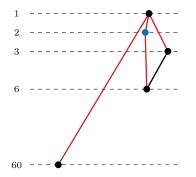
prime p	Compute?
2	X
3	1
5	1
÷	÷

Compute all normal subgroups of

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

prime p	Compute?
2	X
3	1
5	1
÷	÷



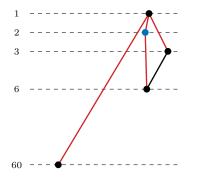
Compute all normal subgroups of

RWITHAACI

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

prime p	Compute?
2	X
3	1
5	1
:	÷



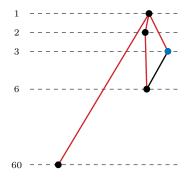
Compute all normal subgroups of

RWITHA

- $G = Alt(5) \times C_2 \times C_3$
- up to index n = 200.

Intersections under H:

Nothing to do.



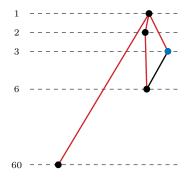
Compute all normal subgroups of

RWITHAACI

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

prime <i>p</i>	Compute?
2	✓
3	X
5	\checkmark
:	÷



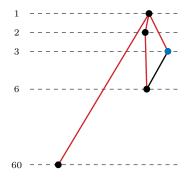
Compute all normal subgroups of

RWITHAACI

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

prime p	Compute?
2	1
3	X
5	\checkmark
÷	÷



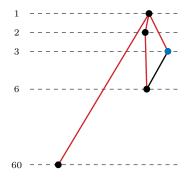
Compute all normal subgroups of

RWITHAACI

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

prime p	Compute?
2	✓
3	×
5	\checkmark
÷	÷



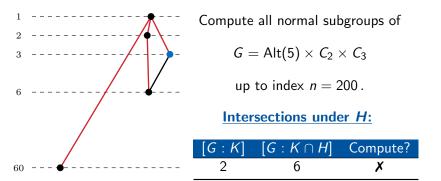
Compute all normal subgroups of

RWITHAACI

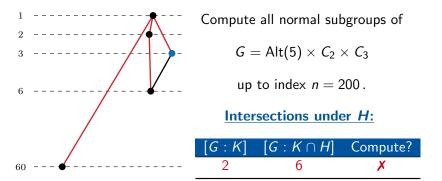
 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

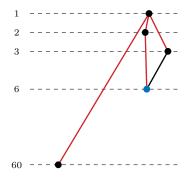
prime <i>p</i>	Compute?
2	✓
3	X
5	1
:	÷



RWITHAACI



RWTHAAC



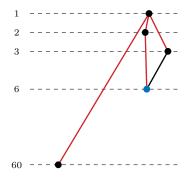
Compute all normal subgroups of

RWITHAACI

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

prime <i>p</i>	Compute?
2	X
3	X
5	1
:	÷



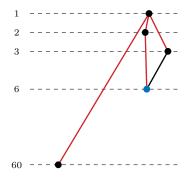
Compute all normal subgroups of

RWITHAACI

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

prime <i>p</i>	Compute?
2	×
3	X
5	\checkmark
:	÷



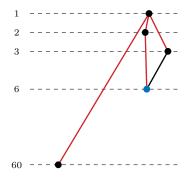
Compute all normal subgroups of

RWITHAACI

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

prime <i>p</i>	Compute?
2	X
3	×
5	\checkmark
:	÷



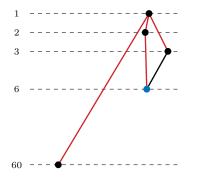
Compute all normal subgroups of

RWITHAACI

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

prime p	Compute?
2	X
3	X
5	1
:	÷



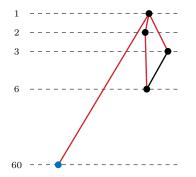
Compute all normal subgroups of

RWITHA

- $G = Alt(5) \times C_2 \times C_3$
- up to index n = 200.

Intersections under H:

Nothing to do.



Compute all normal subgroups of

RWITHAACI

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

prime p	Compute?
2	✓
3	X
5	×
÷	÷

Compute all normal subgroups of

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

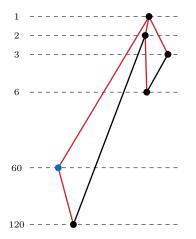
prime p	Compute?
2	✓
3	×
5	X
÷	÷

Compute all normal subgroups of

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

prime p	Compute?
2	✓
3	×
5	X
÷	÷



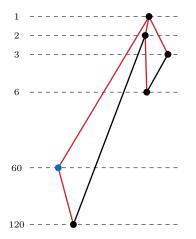
Compute all normal subgroups of

RWTHAAC

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

prime p	Compute?
2	✓
3	×
5	X
÷	÷



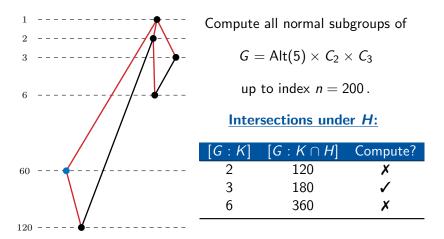
Compute all normal subgroups of

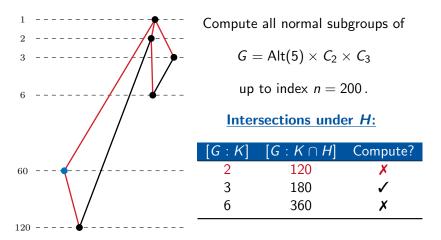
RWTHAAC

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

prime p	Compute?
2	✓
3	X
5	×
:	÷





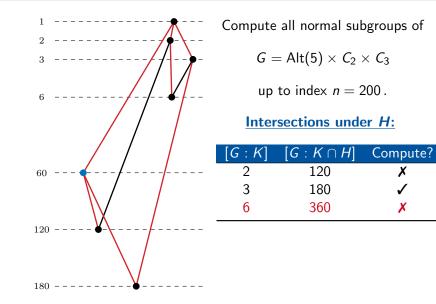
Compute all normal subgroups of

 $G = Alt(5) \times C_2 \times C_3$

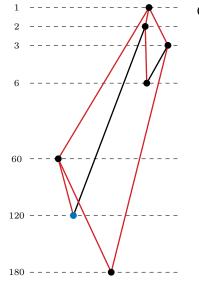
up to index n = 200.

Intersections under H:

[G : K]	$[G:K\cap H]$	Compute?
2	120	X
3	180	1
6	360	X



General Approach



Compute all normal subgroups of

RWITH

 $G = Alt(5) \times C_2 \times C_3$

up to index n = 200.

Terminate Search!

General Approach

GAP Session

Normal Subgroups of Dih(50):

```
gap> LoadPackage("LINS");;
gap> n := 50;;
```


Normal Subgroups of Dih(50):

Normal Subgroups of Dih(50):

gap> LoadPackage("LINS");;

```
gap> pList := [3, 3, 4, 5];;
gap> G := DirectProduct(List(pList, p -> CyclicGroup(p)));;
gap> gr := LowIndexNormalSubgroupsSearchForIndex(G, 15, 1);
<lins graph found 7 normal subgroups up to index 15>
gap> L := ComputedNormalSubgroups(gr);
[ <lins node of index 15> ]
gap> IsoTypes := List(L, node -> StructureDescription(Grp(node)));
[ "C12" ]
gap> gr2 := LowIndexNormalSubgroupsSearchForAll(G, 15);
<lins graph found 22 normal subgroups up to index 15>
gap> Number(List(gr2), rH -> Index(rH) = 15);
4
```



```
gap> LoadPackage("LINS");;
gap> pList := [3, 3, 4, 5];;
gap> G := DirectProduct(List(pList, p -> CyclicGroup(p)));;
gap> gr := LowIndexNormalSubgroupsSearchForIndex(G, 15, 1);
<lins graph found 7 normal subgroups up to index 15>
```



```
gap> LoadPackage("LINS");;
gap> pList := [3, 3, 4, 5];;
gap> G := DirectProduct(List(pList, p -> CyclicGroup(p)));;
gap> gr := LowIndexNormalSubgroupsSearchForIndex(G, 15, 1);
s graph found 7 normal subgroups up to index 15>
gap> L := ComputedNormalSubgroups(gr);
[ <lins node of index 15> ]
gap> IsoTypes := List(L, node -> StructureDescription(Grp(node)));
[ "C12" ]
```



```
gap> LoadPackage("LINS");;
gap> pList := [3, 3, 4, 5];;
gap> G := DirectProduct(List(pList, p -> CyclicGroup(p)));;
gap> gr := LowIndexNormalSubgroupsSearchForIndex(G, 15, 1);
s graph found 7 normal subgroups up to index 15>
gap> L := ComputedNormalSubgroups(gr);
[ <lins node of index 15> ]
gap> IsoTypes := List(L, node -> StructureDescription(Grp(node)));
[ "C12" ]
gap> gr2 := LowIndexNormalSubgroupsSearchForAll(G, 15);
<lins graph found 22 normal subgroups up to index 15>
gap> Number(List(gr2), rH -> Index(rH) = 15);
4
```


GAP Session

Group	Index	Magma	LINS	#Normal Subgroups
$C_2 * C_5$	1 000	5 s	8 s	88
$C_2 * C_5$	3 000	88 s	200 s	295
$C_2 * C_8$	2 000	12 h	7 h	8 0 9 2
$\mathbb{Z}^2 \rtimes C_3$	1 000	104 s	7 s	206
$\Delta(3,3,3)$	10 000	5 m	22 s	68
Dih(1000)	1000	1 s	4 s	15
Dih(10000)	10 000	26 s	14 m	23
$Alt(5)^3$	216 000	39 m	2 m	8

Disclaimer:

These observations should not be taken too seriously!

Sub-Algorithm	Magma	GAP4
IsomorphismFpGroup	-	
GQuotients		-
MeatAxe		-
Intersection	-	

RWTHAAC

Thank you for your attention!