An algorithm for constructing all supercharacter theories of a finite group

F. Koorepazan-Moftakhar¹ and L. Ghanbari²

¹Department of Algebra, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
²Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran

GAP Days Summer 2022, 17th to 21st October 2022, RWTH Aachen University

Motivation

F. Koorepazan-Moftakhar and L. Ghanbari An algorithm for constructing all supercharacter theories of a fini

Hendrickson make explicit the connection between supercharacter theories and **Schur rings**, and they provide supercharacter theory constructions which correspond to Schur ring products.

A. O. F. Hendrickson, Supercharacter theory constructions corresponding to Schur ring products, *Comm. Algebra* **40**(12) (2012) 4420–4438.

Proposition 2.4. Let G be a finite group. Then there is a bijection

$$\begin{cases} supercharacter theories \\ (\mathscr{X}, \mathscr{H}) \text{ of } G \end{cases} \longleftrightarrow \begin{cases} S\text{-rings over } G \\ contained \text{ in } \mathbf{Z}(\mathbb{C}[G]) \end{cases}$$
$$(\mathscr{X}, \mathscr{H}) \longmapsto \operatorname{span}_{\mathbb{C}}\{\widehat{K}: K \in \mathscr{H}\}.\end{cases}$$

In 2008, P. Diaconis and I. M. Isaacs introduced the theory of supercharacters axiomatically, building upon seminal work of C. Andre on the representation theory of unipotent matrix groups [1], [2]. Supercharacter techniques have been used to study the **Hopf algebra of symmetric functions of noncommuting variables** [3],random walks on upper triangular matrices [4],

In 2008, P. Diaconis and I. M. Isaacs introduced the theory of supercharacters axiomatically, building upon seminal work of C. Andre on the representation theory of unipotent matrix groups [1], [2]. Supercharacter techniques have been used to study the **Hopf algebra of symmetric functions of noncommuting variables** [3],**random walks on upper triangular matrices** [4],**combinatorial properties of Schur rings** [5], [6], [7],

In 2008, P. Diaconis and I. M. Isaacs introduced the theory of supercharacters axiomatically, building upon seminal work of C. Andre on the representation theory of unipotent matrix groups [1], [2]. Supercharacter techniques have been used to study the **Hopf algebra of symmetric functions of noncommuting variables** [3],**random walks on upper triangular matrices** [4],**combinatorial properties of Schur rings** [5], [6], [7],and Ramanujan sums [8].

- Carlos A. M. André, The basic character table of the unitriangular group, J. Algebra, 241(1):437-471, 2001.
- 2 Carlos A. M. André , Basic characters of the unitriangular group, J. Algebra, 175(1):287-319, 1995.
- 3 Marcelo Aguiar, et. al., Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras, Adv. Math., 229:2310-2337, 2012.
- 4 Ery Arias-Castro, Persi Diaconis, and Richard Stanley, A super-class walk on upper-triangular matrices, J. Algebra, 278(2):739-765, 2004.
- 5 Persi Diaconis and Nathaniel Thiem, Supercharacter formulas for pattern groups, Trans. Amer. Math. Soc., 361(7):3501-3533, 2009.
- 6 Nathaniel Thiem, Branching rules in the ring of superclass functions of unipotent upper-triangular matrices, J. Algebraic Combin., 31(2):267-298, 2010.
- 7 Nathaniel Thiem and Vidya Venkateswaran, Restricting supercharacters of the finite group of unipotent uppertriangular matrices. Electron. J. Combin., 16(1):Research Paper 23, 32, 2009.
- 8 Christopher E Fowler, Stephan Ramon Garcia, and Gizem Karaali. Ramanuian sums as supercharacters F. Koorepazan-Moftakhar and L. Ghanbari An algorithm for constructing all supercharacter theories of a fini

In 2008, P. Diaconis and I. M. Isaacs introduced the theory of supercharacters axiomatically, building upon seminal work of C. Andre on the representation theory of unipotent matrix groups [1], [2]. Supercharacter techniques have been used to study the **Hopf algebra of symmetric functions of noncommuting variables** [3],**random walks on upper triangular matrices** [4],**combinatorial properties of Schur rings** [5], [6], [7],and **Ramanujan sums** [8].

- Carlos A. M. André, The basic character table of the unitriangular group, J. Algebra, 241(1):437-471, 2001.
- 2 Carlos A. M. André , Basic characters of the unitriangular group, J. Algebra, 175(1):287-319, 1995.
- 3 Marcelo Aguiar, et. al., Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras, Adv. Math., 229:2310-2337, 2012.
- 4 Ery Arias-Castro, Persi Diaconis, and Richard Stanley, A super-class walk on upper-triangular matrices, J. Algebra, 278(2):739-765, 2004.
- 5 Persi Diaconis and Nathaniel Thiem, Supercharacter formulas for pattern groups, Trans. Amer. Math. Soc., 361(7):3501-3533, 2009.
- 6 Nathaniel Thiem, Branching rules in the ring of superclass functions of unipotent upper-triangular matrices, J. Algebraic Combin., 31(2):267-298, 2010.
- 7 Nathaniel Thiem and Vidya Venkateswaran, Restricting supercharacters of the finite group of unipotent uppertriangular matrices. Electron. J. Combin., 16(1):Research Paper 23, 32, 2009.
- 8 Christopher E Fowler, Stephan Ramon Garcia, and Gizem Karaali. Ramanuian sums as supercharacters F. Koorepazan-Moftakhar and L. Ghanbari An algorithm for constructing all supercharacter theories of a fini

Gauss's Hidden Menagerie: From Cyclotomy to Supercharacters

Stephan Ramon Garcia, Trevor Hyde, and Bob Lutz

A risk and of options, cause stabilised the constrainthy of the 12 pps, a significant shafe claided mathematicities againment was a korn study of erruits sums of complex exponential, known now a Gaussine period. These sums play sarring robes in applications both classical and modern. In the cyclosome integraps [12] and the optimized AKs primality sets of 1k. W. Lemars and C. Patretin, 12, 2k has parent roles, this recent applications of caussite periods making play and stability of the set of the set of the set of the set of caussite periods making play and of caussite periods making play and of caussite periods making play and of the set of the s

We seek here to isudy Gaussian periods from a graphical persective. It unrows out that these classtral objects, when viewed appropriately, exhibit a disziling and exlercit hose of visual qualities. Some images, contain discretized versions of familiar shapes, while others resemble natural phenomena. Many can be colorized to isolate certain features; for details, see "Veclic Super-Characters."

Historical Context

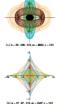
The problem of constructing a regular polygon with compass and straight-edge dates back to ancient times. Descartes and others knew that with only these tools on hand, the motivated geometer could draw, in principle, any segment whose length could be written as a finite composition

Stephan Ramon Garcia is associate professor of mathematics at Pomona College. His email address is Seephan. Carc1a@pomona.edu.

Trevor Hyde is a graduate student at the University of Michigan. His email address is t-ghydo@unich.edu.

Bob Lucz is a graduase student at the University of Michique. He email address is bob loc z@unich.edu. All article (pares are coursesy of Bob Lucz. Partially supported by National Science Foundation Grant

DMS-1265973. DOI: http://dx.doi.org/10.1090/noti1269



(a) = - 37 - 97 - 113, er = 5567, c = 113 Figure 1, Eve and iewel—images of cyclic

supercharacters correspond to sets of Gaussian periods. For notation and terminology, see "Cyclic Supercharacters."

of sums, products, and square roots of rational numbers [18]. Gauss's construction of the 17-gon relied on showing that

$$16 \cos \left(\frac{2\pi}{17}\right) = -1 + \sqrt{17} + \sqrt{34 - 2\sqrt{17}} \\ + 2\sqrt{17 + 3\sqrt{17} - \sqrt{34 - 2\sqrt{17}} - 2\sqrt{34 + 2\sqrt{17}}}$$

878

NOTICES OF THE AMS

VOLUME 62, NUMBER 8

F. Koorepazan-Moftakhar and L. Ghanbari

An algorithm for constructing all supercharacter theories of a fini

Connection with Number Theory

At the age of eighteen, Gauss established the constructibility of the 17-gon, a result that had eluded mathematicians for two millennia. At the heart of his argument was a keen study of certain sums of complex exponentials, known now as **Gaussian periods**. These sums play starring roles in applications both classical and modern, including Kummer's development of arithmetic in the cyclotomic integers [1] and the optimized AKS primality test of H. W. Lenstra and C. Pomerance [2, 3]. In a poetic twist, this recent application of Gaussian periods realizes "Gauss's dream" of an efficient algorithm for distinguishing prime numbers from composites [4].

- 1 A. N. Kolmogorov and A. A. P. Yushkevich, Mathematics of the 19th Century: Vol. II: Geometry, Analytic Function Theory, 1996.
- 2 Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, PRIMES is in p, Annals of Mathematics, 160(2):781-793, 2004.
- 3 H. W. Lenstra, Primality testing with Gaussian periods, Manindra Agrawal and Anil Seth, editors, FST TCS 2002: Foundations of Software Technology and Theoretical Computer Science, volume 2556 of Lecture Notes in Computer Science, Springer, Berlin-Heidelberg, 2002, p. 1.
- 4 Andrew Granville, It is easy to determine whether a given integer is prime, Bull. Amer. Math. Soc., 42(1):3- 38, 2005.

F. Koorepazan-Moftakhar and L. Ghanbari An algorithm for constructing all supercharacter theories of a fini

Cyclic Supercharacter Theory

 $\sigma_X : \mathbb{Z}/n\mathbb{Z} \to \mathbb{C}$ $\sigma_X(y) = \sum_{x \in X} e\left(\frac{xy}{n}\right).$

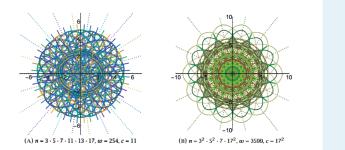


Figure 4. Atoms—images of *cyclic supercharacters* correspond to sets of Gaussian periods. For notation and terminology, see "Cyclic Supercharacters."

- Hendrickson, A. O. F. (2008). Supercharacter theories of cyclic p-groups. Phd thesis. University of Wisconsin, Madison, Wisconssin.
- Koorepazan-Moftakhar, F. (2018). The supercharacter theories of a finite group and the structure of their associated normal subgroups. Phd thesis. University of Kashan, Kashan, Iran.

- Hendrickson, A. O. F. (2008). Supercharacter theories of cyclic p-groups. Phd thesis. University of Wisconsin, Madison, Wisconssin.
- Koorepazan-Moftakhar, F. (2018). The supercharacter theories of a finite group and the structure of their associated normal subgroups. Phd thesis. University of Kashan, Kashan, Iran.
- Jonathan, P. L. (2018). Lattices of supercharacter theories. Phd thesis. University of Colorado, Boulder, Colorado, USA.

- Hendrickson, A. O. F. (2008). Supercharacter theories of cyclic p-groups. Phd thesis. University of Wisconsin, Madison, Wisconssin.
- Koorepazan-Moftakhar, F. (2018). The supercharacter theories of a finite group and the structure of their associated normal subgroups. Phd thesis. University of Kashan, Kashan, Iran.
- Jonathan, P. L. (2018). Lattices of supercharacter theories. Phd thesis. University of Colorado, Boulder, Colorado, USA.
- Frieder Ladisch (2021) Finding supercharacter theories on character tables, Communications in Algebra, 49:5, 2126-2140.

- Hendrickson, A. O. F. (2008). Supercharacter theories of cyclic p-groups. Phd thesis. University of Wisconsin, Madison, Wisconssin.
- Koorepazan-Moftakhar, F. (2018). The supercharacter theories of a finite group and the structure of their associated normal subgroups. Phd thesis. University of Kashan, Kashan, Iran.
- Jonathan, P. L. (2018). Lattices of supercharacter theories. Phd thesis. University of Colorado, Boulder, Colorado, USA.
- Frieder Ladisch (2021) Finding supercharacter theories on character tables, Communications in Algebra, 49:5, 2126-2140.

P. Diaconis and I. M. Isaacs (2008)

Let G be a finite group, and suppose that \mathcal{K} is a partition of G into unions of conjugacy classes and \mathcal{X} is a set of characters of G. We say that the pair $(\mathcal{K}; \mathcal{X})$ is a supercharacter theory of G if

 $|\mathcal{X}| = |\mathcal{K}|,$

() the characters $\chi \in \mathcal{X}$ are constant on the members of $\mathcal{K},$ and

P. Diaconis and I. M. Isaacs (2008)

Let G be a finite group, and suppose that \mathcal{K} is a partition of G into unions of conjugacy classes and \mathcal{X} is a set of characters of G. We say that the pair $(\mathcal{K}; \mathcal{X})$ is a supercharacter theory of G if

$$\bigcirc |\mathcal{X}| = |\mathcal{K}|,$$

- **(**) the characters $\chi \in \mathcal{X}$ are constant on the members of \mathcal{K} , and
- each irreducible character of G is a constituent of exactly one character in \mathcal{X} .

The characters $\chi \in \mathcal{X}$ are referred to as supercharacters and the sets $K \in \mathcal{K}$ are called superclasses.

P. Diaconis and I. M. Isaacs, Supercharacters and superclasses for algebra groups, *Trans. Amer. Math. Soc.* **360** (2008) 2359–2392.

P. Diaconis and I. M. Isaacs (2008)

Let G be a finite group, and suppose that \mathcal{K} is a partition of G into unions of conjugacy classes and \mathcal{X} is a set of characters of G. We say that the pair $(\mathcal{K}; \mathcal{X})$ is a supercharacter theory of G if

$$\bigcirc |\mathcal{X}| = |\mathcal{K}|,$$

- **(**) the characters $\chi \in \mathcal{X}$ are constant on the members of \mathcal{K} , and
- each irreducible character of G is a constituent of exactly one character in \mathcal{X} .

The characters $\chi \in \mathcal{X}$ are referred to as supercharacters and the sets $K \in \mathcal{K}$ are called superclasses.

P. Diaconis and I. M. Isaacs, Supercharacters and superclasses for algebra groups, *Trans. Amer. Math. Soc.* **360** (2008) 2359–2392.

Lemma

Let $(\mathcal{K}; \mathcal{L})$ be a supercharacter theory of G. Then

\bigcirc {1} is in \mathcal{K} ,

② some multiple of the trivial character 1_G of G is in \mathcal{X} , and

Lemma

Let $(\mathcal{K}; \mathcal{L})$ be a supercharacter theory of G. Then

- \bigcirc {1} is in \mathcal{K} ,
- **(2)** some multiple of the trivial character 1_G of G is in \mathcal{X} , and
- each character in X is of the form

$$\chi = \mathsf{a}_\chi \sum_{arphi \in \mathcal{S}_\chi} arphi(1) arphi$$

for some constant a_{χ} and some subset $S_{\chi} \subset Irr(G)$.

P. Diaconis and I. M. Isaacs, Supercharacters and superclasses for algebra groups. *Trans. Amer. Math. Soc.* **360** (2008) 2359–2392.

Lemma

Let $(\mathcal{K}; \mathcal{L})$ be a supercharacter theory of G. Then

- \bigcirc {1} is in \mathcal{K} ,
- \bigcirc some multiple of the trivial character 1_G of G is in \mathcal{X} , and
- each character in X is of the form

$$\chi = \mathsf{a}_{\chi} \sum_{arphi \in \mathcal{S}_{\chi}} arphi(1) arphi$$

for some constant a_{χ} and some subset $S_{\chi} \subset Irr(G)$.

P. Diaconis and I. M. Isaacs, Supercharacters and superclasses for algebra groups. *Trans. Amer. Math. Soc.* **360** (2008) 2359–2392.

Some supercharacter theories of G:

• Supercharacter theory m(G), ordinary character theory of G.

Some supercharacter theories of G:

- Supercharacter theory m(G), ordinary character theory of G.
- Supercharacter theory M(G): $S = \{\{1_G\}, Irr(G) \{1_G\}\}$ and $\mathcal{K} = \{\{e\}, G \{e\}\}.$

Some supercharacter theories of G:

- Supercharacter theory m(G), ordinary character theory of G.
- Supercharacter theory M(G): $S = \{\{1_G\}, Irr(G) \{1_G\}\}$ and $\mathcal{K} = \{\{e\}, G \{e\}\}.$

	Class	e ^G	x_2^G	x_3^G	x ₄ ^G	x_5^G	x_6^G	x_7^G
	Size	1	45	90	40	40	72	72
	Order	1	2	4	3	3	5	5
-	1 _G	1	1	1	1	1	1	1
	χ2	5	1	-1	-1	2	0	0
	χз	5	1	-1	2	-1	0	0
	χ4	10	-2	0	1	1	0	0
	χ_5	8	0	0	-1	-1	$1 + \alpha$	$-\alpha$
	χ_6	8	0	0	-1	-1	$-\alpha$	$1 + \alpha$
	χ7	9	1	1	0	0	-1	-1

Tables The Character Table of A

 $(\alpha = (\zeta_5)^3 + (\zeta_5)^2$, where ζ_5 is a primitive 5th root of 1)

Class	e G	x_2^G	x_3^G	x4 ^G	x_5^G	x_6^G	x_7^G
Size	1	45	90	40	40	72	72
Order	1	2	4	3	3	5	5
1_G	1	1	1	1	1	1	1
χ2	5	1	-1	-1	2	0	0
<i>χ</i> з	5	1	-1	2	-1	0	0
χ_4	10	-2	0	1	1	0	0
χ_5	8	0	0	-1	-1	$1 + \alpha$	$-\alpha$
χ_{6}	8	0	0	-1	-1	$-\alpha$	$1 + \alpha$
χ7	9	1	1	0	0	-1	-1

 $(\alpha = (\zeta_5)^3 + (\zeta_5)^2$, where ζ_5 is a primitive 5th root of 1)

Class	e ^G	x_2^G	x_3^G	x ₄ ^G	x_5^G	x ₆ ^G	x ₇ ^G
Size	1	45	90	40	40	72	72
Order	1	2	4	3	3	5	5
1 _G	1	1	1	1	1	1	1
$\sum_{i=2}^{4} \chi_i(1)\chi_i$	150	-10	-10	15	15	0	0
$\sum_{i=5}^{6} \chi_i(1)\chi_i$	128	0	0	-16	-16	8	8
$\chi_7(1)\chi_7$	81	9	9	0	0	-9	-9

Class	e ^G	x ₂ ^G 45	x ₃ ^G 90	x ₄ ^G	x_5^G	x ₆ ^G	x ₇ G
Size	1	45	90	40	40	72	72
Order	1	2	4	3	3	5	5
1 _G	1	1	1	1	1	1	1
$\sum_{i=2}^{4} \chi_i(1)\chi_i$	150	-10	-10	15	15	0	0
$\sum_{i=5}^{6} \chi_i(1)\chi_i$	128	0	0	-16	-16	8	8
$\chi_7(1)\chi_7$	81	9	9	0	0	-9	-9

Any group $H \le Aut(G)$: Take \mathcal{K} to be the orbits on classes of Gand \mathcal{X} to be the orbits on Irr(G). (Then $|\mathcal{K}| = |\mathcal{X}|$ by a lemma of Brauer.)

Lemma

Suppose G is a finite group, $A = \{\chi(x) \mid \chi \in Irr(G)\}$ and $\mathbb{Q}(A)$ denotes the field generated by \mathbb{Q} and A. Then the following holds:

- If $\mathcal{X}(G) = \{\{\chi, \overline{\chi}\} \mid \chi \in Irr(G)\}\$ and $\mathcal{K}(G) = \{\{x^G, (x^{-1})^G\} \mid x \in G\}\$ then $(\mathcal{X}(G), \mathcal{K}(G))\$ is a supercharacter theory of G.
- If Γ = Gal(^{Q(A)}/_Q), X(G) is the set of all orbits of Γ on Irr(G) and K(G) is the set of all orbits of Γ on Con(G) then (X(G), K(G)) is a supercharacter theory of G.

A. R. Ashrafi, F. Koorepazan-Moftakhar, Towards the classification of finite simple groups with exactly three or four supercharacter theories, Asian-Eur. J. Math. 11(5):1850096 (2018).

PartitionsSet(set[, k])

returns the set of all unordered partitions of the set set into k pairwise disjoint nonempty sets. If k is not given it returns all unordered partitions of set for all k. PartitionsSet(set[, k])

- returns the set of all unordered partitions of the set set into k pairwise disjoint nonempty sets. If k is not given it returns all unordered partitions of set for all k.
- GAP encountered an error for [17]*: "Error, reached the pre-set memory limit"

PartitionsSet(set[, k])

- returns the set of all unordered partitions of the set set into k pairwise disjoint nonempty sets. If k is not given it returns all unordered partitions of set for all k.
- GAP encountered an error for [17]*: "Error, reached the pre-set memory limit"

Let $X = \{\chi_1, \ldots, \chi_u\}$ and $K = \{K_1, \ldots, K_s\}$ be parts of set partitions \mathcal{X} of Irr(G) and \mathcal{K} of Con(G), respectively. If $\sigma_X(K_1) = \cdots = \sigma_X(K_s)$, then we say that X and K are *consistent*. If all parts of \mathcal{X} are mutually consistent with all parts of \mathcal{K} , then the set partitions \mathcal{X} and \mathcal{K} are said to be consistent.

A part X of a set partition \mathcal{X} of Irr(G) is said to be *bad* if X is consistent with only singleton subsets of Con(G). A set partition containing a bad part is called a *bad set partition*. It is easy to see that a bad set partition \mathcal{X} of Irr(G) does not have a mate \mathcal{K} such that $(\mathcal{X}, \mathcal{K}) \in Sup(G)$. Let $X = \{\chi_1, \ldots, \chi_u\}$ and $K = \{K_1, \ldots, K_s\}$ be parts of set partitions \mathcal{X} of Irr(G) and \mathcal{K} of Con(G), respectively. If $\sigma_X(K_1) = \cdots = \sigma_X(K_s)$, then we say that X and K are *consistent*. If all parts of \mathcal{X} are mutually consistent with all parts of \mathcal{K} , then the set partitions \mathcal{X} and \mathcal{K} are said to be consistent.

A part X of a set partition \mathcal{X} of Irr(G) is said to be *bad* if X is consistent with only singleton subsets of Con(G). A set partition containing a bad part is called a *bad set partition*. It is easy to see that a bad set partition \mathcal{X} of Irr(G) does not have a mate \mathcal{K} such that $(\mathcal{X}, \mathcal{K}) \in Sup(G)$.

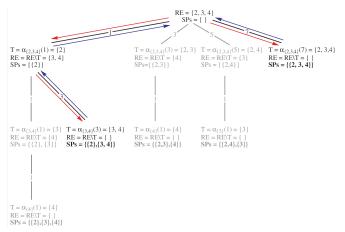
Tabelle: Percentage of existence of bad parts for some cyclic and dihedral groups.

κ(G)	Group	$\alpha(G)$	Sup(G)	κ(G)	Group	$\alpha(G)$	Sup(G)
4	D_4	%0	5	2	Z ₂	%100	1
3	D_6	%66.67	2	3	Z ₃	%66.67	2
4	D ₁₀	%57.14	3	5	Z_5	%80	3
5	D ₁₄	%80	3	7	Z ₇	%85.7	4
7	D ₂₂	%95	3	11	Z ₁₁	%96.77	4
8	D ₂₆	%84.3	5	13	Z ₁₃	%98.16	6
10	D ₃₄	%93.75	5	17	Z ₁₇	%99.6	5
11	D ₃₈	%98.53	4	19	Z ₁₉	%99.78	6
13	D ₄₆	%99.92	3				
16	D ₅₈	%99.2	5				
17	D ₆₂	%99.88	5				

History of algorithms for computing set partitions In literature, there are two algorithms by Semba and Er for computing set partitions of [n].

Tabelle: Order of algorithms for computing set partitions

Semba (1984)	Er (1988)	(2008)
$\Theta(4B_n)$	$\Theta(1.6B_n)$	$\frac{\sum_{i=2}^{n}}{B_n} < 2$



CreateSetPartitions([4]*, badparts=[[2,3]; [2,4]; [3]; [4]])

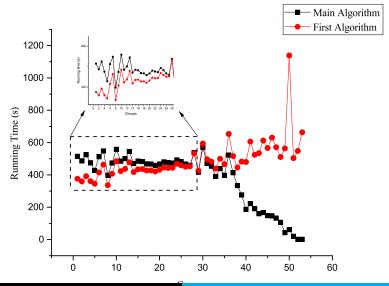
The average running time after three runs for both algorithms on a computer with

- Processor: Intel[®] Core(TM) m7-6Y75 CPU @ 1.20 GHz 1.51 GHz,
- installed memory (RAM) 8.00 GB (7.90 GB usable),
- with system type: 64 bit operating system, x64-based processor

are summarized in the next table:

Tabelle: Comparing the running times for some groups.

κ(G)	G	Sup(G)	BP(G)	$\alpha(G)$	Main algorithm	First algorithm	FA/MA
					(MA)(second)	(FA)(second)	
10	[100, 11]	623	0	0	1.4	1.1	0.8
11	[32, 43]	376	0	0	7.6	6.7	0.9
11	[32, 44]	376	0	0	8.1	7.5	0.9
12	[1296, 3523]	1058	0	0	70.1	62	0.9
13	[64, 32]	325	0	0	464.6	429.8	0.9
12	D36	51	168	8.2	65.4	68.2	1.04
12	M22	5	288	14.1	65.8	61.8	0.9
10	M11	5	112	21.9	0.8	1.1	1.4
10	D28	23	144	28.9	0.8	1.7	2.1
10	[120, 35]	10	152	29.7	0.6	1.1	1.8
13	[93, 1]	9	1980	48.4	169.7	662.3	3.9
13	[253, 1]	9	1980	48.4	127.8	521.3	4.08
10	Z10	10	376	73.6	0.06	1.2	20
10	D34	5	480	93.9	0.04	1.3	32.5
11	Z11	4	990	96.8	0.1	7.9	79
13	Z13	6	4020	98.1	1.2	548.2	456.8
11	D38	4	1008	98.5	0.1	8.5	85
13	D46	3	4092	99.9	1.2	610.6	508.8



F. Koorepazan-Moftakhar and L. Ghanbari

An algorithm for constructing all supercharacter theories of a fini

Tabelle: The GAP id of all groups with exactly 13 conjugacy classes.

1	[162, 21]	12	[162, 20]	23	[960, 11359]	34	[100, 10]	45	[328, 12]
2	[96, 191]	13	[1944, 2290]	24	[64, 33]	35	[162, 15]	46	[148, 3]
3	[400, 206]	14	[64, 37]	25	[1000, 86]	36	[40, 6]	47	[333, 3]
4	[162, 22]	15	[64, 32]	26	[720, 409]	37	[1053, 51]	48	[156, 7]
5	[192, 1494]	16	[96, 190]	27	[576, 8652]	38	[120, 38]	49	[301, 1]
6	[96, 193]	17	[192, 1491]	28	[40, 4]	39	[600, 148]	50	[205, 1]
7	[1944, 2289]	18	[64, 36]	29	[162,11]	40	[216, 86]	51	[150, 5]
8	[192, 1493]	19	[192, 1492]	30	[160, 199]	41	[258, 1]	52	[13, 1]
9	[1440, 5841]	20	[64, 35]	31	[324, 160]	42	[310, 1]	53	[46, 1]
10	[40, 8]	21	[162, 19]	32	[162, 13]	43	[253, 1]		
11	[64, 34]	22	[216, 87]	33	[1320, 133]	44	[93, 1]		

InsuperCharacterTheories(G);

Output: SuperCharacterTheories(G);

- NrSuperCharacterTheories(G);
- SuperCharacterTheories(G);
- SuperCharacterTable(G);

- InsuperCharacterTheories(G);
- SuperCharacterTheories(G);
- SuperCharacterTable(G);

Thanks for your attention

Tabatabaei Historical House, Kashan, Iran

F. Koorepazan-Moftakhar and L. Ghanbari An algorithm for constructing all supercharacter theories of a fini