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Special linear group AR | TERRY

Special Linear Group

Let d € N, g = p’ a prime power and define

SL(d, q) := {a € GL(d, q) | det(a) = 1}.
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Sp, SU, SO, Omega

Let d € N, g = p’ a prime power and define
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Sp, SU, SO, Omega

Let d € N, g = p’ a prime power and define

1) Sp(d,q) :={a€SL(d,q) | abspaT’ = bsp} for d even and
bSP € GL(d7 q)
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Remaining Classical Groups VAR | e

Sp, SU, SO, Omega

Let d € N, g = p’ a prime power and define
1) Sp(d,q) :={a€SL(d,q) | abspaTr = bsp} for d even and
bsp, € GL(d, q).
2) SU(d,q) := {acSL(d,q?) | absya" = bsy} for
bsy € GL(d, q).
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Sp, SU, SO, Omega
Let d € N, g = p’ a prime power and define

1) Sp(d,q) := {a € SL(d, q) | abspa™ = bs,} for d even and
bsp € GL(d, ).

2) SU(d,q) := {a € SL(d,q?) | absya™ = bsy} for
bsy € GL(d, q).
3) SO (d,q) := {a € SL(d,q) | abso+a’ = bsp+} for d even,
bso+ € GL(d, q) and p > 2. Set Q*(d q) =S0"(d,q)".
4) SO~ (d,q) := {a€SL(d,q) | absp-a’" = bso-} for d even,
bso- € GL(d,q) and p > 2. Set Q~ (d q) =S07(d,q)".

5) SO°(d,q) := {a € SL(d,q) | absgoea’ = bspe} for d odd,
bso- € GL(d, q) and p > 2. Set Q°(d, q) = SO°(d, q)’.
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(B, N) Pair VAR | R

Let G be a group. A (B, N) Pair is a pair of subgroups B and N of
G, such that all of the following holds:
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(B, N) Pair VAR | R

Let G be a group. A (B, N) Pair is a pair of subgroups B and N of
G, such that all of the following holds:

1) G = (B, N),
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Let G be a group. A (B, N) Pair is a pair of subgroups B and N of
G, such that all of the following holds:

1.) G=(B,N),
2.) H= BnN N is a normal subgroup of N,
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(B, N) Pair | T

Let G be a group. A (B, N) Pair is a pair of subgroups B and N of
G, such that all of the following holds:

1.) G=(B,N),
2.) H= BnN N is a normal subgroup of N,

3.) The group W = N/H is generated by a set S of elements w;
of order 2 for i € | and | # () an index set,
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(B, N) Pair | T

Let G be a group. A (B, N) Pair is a pair of subgroups B and N of
G, such that all of the following holds:
1.) G=(B,N),
2.) H= BnN N is a normal subgroup of N,
3.) The group W = N/H is generated by a set S of elements w;
of order 2 for i € | and | # () an index set,
4.) If w; = n;H and n € N, then
a.) n;Bn C (Bn;nB) U (BnB) and
b.) n;Bn; # B.

Bruhat Decomposition

@O



Bruhat Decomposition AR | TERRY

Let G be a group with a (B, N)-pair, H= BN N and W = N/H.
The Bruhat decomposition of G is the decomposition of G into

G = BWB.
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Bruhat Decomposition VAR | e

Let G be a group with a (B, N)-pair, H=BNN and W = N/H.
The Bruhat decomposition of G is the decomposition of G into

G = BWB.

Theorem

Let G < GL(d, q) be a classical group in its natural representation,
B < G the subgroup of lower triangular matrices and W < G the
subgroup of monomial matrices. Then we can decompose G as

G = BWB.
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Let G < GL(d, q) be a classical group in its natural representation.
Then we want to compute for a € G
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Let G < GL(d, q) be a classical group in its natural representation.
Then we want to compute for a € G

1) the Bruhat Decomposition and
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Goals AR | TONTHGARERY

Let G < GL(d, q) be a classical group in its natural representation.
Then we want to compute for a € G

1) the Bruhat Decomposition and

2) an expression of a as a word in the Leedham-Green O'Brien
(LGO) standard generators.

Idea of Algorithm
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Write a matrix a € G in terms of the LGO standard generators.
We proceed as follows:
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Write a matrix a € G in terms of the LGO standard generators.
We proceed as follows:

1.) Constructively find two unitriangular matrices uy, up such that

urauy = w where w is a monomial matrix. (Bruhat
decomposition)
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Strategy AR | TERRY

Write a matrix a € G in terms of the LGO standard generators.

We proceed as follows:

1.) Constructively find two unitriangular matrices uy, up such that
urauy = w where w is a monomial matrix. (Bruhat
decomposition)

2.) Constructively find a monomial matrix w” such that
(W")"w = h where h is a diagonal matrix.
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Write a matrix a € G in terms of the LGO standard generators.

We proceed as follows:

1.) Constructively find two unitriangular matrices uy, up such that
urauy = w where w is a monomial matrix. (Bruhat
decomposition)

2.) Constructively find a monomial matrix w” such that
(w")~Yw = h where h is a diagonal matrix.

3.) Write h as a word in terms of the LGO standard generators.
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Strategy AR | TERRY

Write a matrix a € G in terms of the LGO standard generators.
We proceed as follows:

1.) Constructively find two unitriangular matrices uy, up such that
urauy = w where w is a monomial matrix. (Bruhat
decomposition)

2.) Constructively find a monomial matrix w” such that
(w")~Yw = h where h is a diagonal matrix.

3.) Write h as a word in terms of the LGO standard generators.

Then we have

-1 my, -1 _
uy - w'huy © = a.

Idea of Algorithm

O®00000000000



Strategy for the first step VAR | e

Constructively find two unitriangular matrices vy, up such that
urauy; = w where w is a monomial matrix. (Bruhat decomposition)

Bruhat Decomposition Idea of Algorithm
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Strategy for the first step VAR | e

First Step

Constructively find two unitriangular matrices vy, up such that
urauy; = w where w is a monomial matrix. (Bruhat decomposition)

The main idea for the first step is to use some kind of Gaussian
algorithm. For this, new matrices for elementary row and column
operations have to be constructed for each classical group.
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Transvection AR | TONTHGARERY

E,g '(a')

We define E; j(o) € F9*9 for i, j € {1,...,d} with i # j and
« € F* as follows:

j-th
0 0 0
Eij(a)=Ila+|0 ... o ... 0] ith
0 0 0

The matrices E; j(a) for i,j € {1,...,d} with i # j and o € F* are
transvections.

Bruhat Decomposition Idea of Algorithm
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€ SL(6,7)

OO O Wwor
[l el ool o]
[N elNell o N
OO =, O OO
o= OO OO
— O O O O o
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Elements in Sympletic Groups AR | TERRY

1 00 0 00O
010 O OO
301 0 0O
53,1(3) = 000 1 00 € Sp(6?7)
000 O 1O0
0 00 -3 01
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Example of the Algorithm

We demonstrate the algorithm for:

4 2

am |}
1
6

L=\ SR e))

el
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€ Sp(4,7).

oON O b
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Example of the Algorithm VAR | e

We demonstrate the algorithm for:

4 2 3 4
1 6 1 5
a=17 51 9 € Sp(4,7).

6 4 1 0
4 2 3 4 4 2 3 4 4 2 3 4
1 6 1 5| £S.1(4) 3 06 0| £s51(3) 3 06 0
1 21 2 1 21 2 6 1 3 0
6 4 1 0 2 3 4 6 4 31 6

t,",‘m"“' Decomposition Idea of Algorithm
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4 2 3 4 4 2 3 4
306 O *%:(2 13 06 0
6 1 3 0 6 1 3 0
4 3 16 5000
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Example of the Algorithm VAR | e

4 2 3 4 4 2 3 4
306 O *%:(2 13 06 0
6 1 3 0 6 1 3 0
4 3 16 5000
4 2 3 4 2 20 4
3 06 0 Rsa3(1) |3 06 0
6 1 30 5130
5000 5000

t,",‘m"“' Decomposition Idea of Algorithm
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Example of the Algorithm VAR | e

2 20 4 2 00 4 0 0 0 4
306 0| f523) | 0 0 6 0 -f84,1(3) 0 060
5130 0130 01 30
5000 5000 5 000
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Example of the Algorithm VAR | e

2 20 4 2 00 4 0 0 0 4
306 0| f523) | 0 0 6 0 -f84,1(3) 0 060
5130 0130 01 30
5000 5000 5000
0 0 0 4 0 0 0 4
0 0 6 0| f523 |0 0 6 0 _h
0130 0100 ’
5000 5000

t,",‘m"“' Decomposition Idea of Algorithm
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Example of the Algorithm VAR | e

2 2 0 4 2 00 4 0 0 0 4
306 0| f523) | 0 0 6 0 -f84,1(3) 0 060
5130 0130 01 30
5000 5000 5000
0 0 0 4 0 0 0 4
0 0 6 Of 523 10 0 6 0 _h
0130 0100 ’
5000 5000

By multiplying the matrices we obtain the Bruhat decomposition
w = 532(3)541(2)53,1(3)52,1(4)aS4,3(1)S54.2(3)Sa.1(3).

Bruhat Decomposition Idea of Algorithm
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Strategy for the second step VAR | e

Constructively find two unitriangular matrices vy, up such that
urauy; = w where w is a monomial matrix. (Bruhat decomposition)

Bruhat Decomposition Idea of Algorithm
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Strategy for the second step VAR | e

First Step

Constructively find two unitriangular matrices vy, up such that
urauy; = w where w is a monomial matrix. (Bruhat decomposition)

Second Step

Given a monomial matrix w € G. Constructively find a monomial
matrix w” € G such that (w”)~'w = h where h € G is a diagonal
matrix.

Bruhat Decomposition Idea of Algorithm
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Strategy for the second step VAR | e

Let N < G be the subgroup of monomial matrices.
Then we can form a homomorphism

b N— Sd
such that for the standard basis ey, ..., ey of FY, w € N permutes
the spans (e1), ..., (eq4) in the same way as ®(w).

Bruhat Decomposition Idea of Algorithm
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Strategy for the second step VAR | e

Let S’ C S be the subset of monomial matrices of the LGO
standard generators. Then

d(s) € Sq

for s € §" and ®(5') < Sg.
For a monomial matrix w € G we can express ¢(w) = w’ as a
word in the generators ®(S').

Bruhat Decomposition Idea of Algorithm
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Strategy for the second step VAR | e

Evaluating the word of the permutations with the matrices S’
yields an element w” € G with ®(w”) = ®(w). Then

h:=w")"1 w

is a diagonal matrix.

Idea of Algorithm
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Strategy for the third step VAR | e

Second Step

Given a monomial matrix w € G. Constructively find a monomial
matrix w” € G such that (w”)~'w = h where h € G is a diagonal
matrix.

Bruhat Decomposition Idea of Algorithm

000000000000 e



Strategy for the third step AT | T TR

Second Step

Given a monomial matrix w € G. Constructively find a monomial
matrix w” € G such that (w”)~'w = h where h € G is a diagonal
matrix.

Third Step

Now we have a diagonal matrix h € G. It remains to write h as a
word in terms of the LGO standard generators. Then we have

!
w=w -h

where ujau, = w.

ecomposition Idea of Algorithm
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gap> g := PseudoRandom(SL(10,5));;
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Example AR | TERRY

gap> g := PseudoRandom(SL(10,5));;

gap> rL := BruhatDecompositionSL(LGOStandardGensSL(10,5), g);
#I returns an SLP to generate ul, u2, p_sign, diag

#I Memory Usage is: 22 memory slots in UnipotentDecomposition
#I and additional: 7 memory slots in PermSLP

#I and additional: 3 memory slots in DiagonalDecomposition
#I The Total Memory Usage is: 32 memory slots

[ <straight line program>,

[ < mutable compressed matrix 10x10 over GF(5) >,
< mutable compressed matrix 10x10 over GF(5) >,

mutable compressed matrix 10x10 over GF(5) >,

<
< mutable compressed matrix 10x10 over GF(5) > ] ]

GAP Session
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Example AR | TERRY

gap> Display(g);

1.331.313
. 124 .3 .432
143 .313 14
2.4132.43.
3132142314
3224 .1.214
43.41.2121
1.3. .43 .41
3.2233 121
3.412422

GAP Session
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gap> Display(L[2,1]);

1 ..
11 ..
. 31.
33 1 ..

3 .1
233431..
3 2. 4 .1 ..
114 .3121.
. 13334111
. 132 143 .1

GAP Session
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gap> Display(L[2,2]);

[y

N NP WD WND -
N W wwdH NN - -
N W NP, NN =

NN

Ll
Wk - DN
et el =R
N - = .
N =
w = -
[

GAP Session
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gap> Display(L[2,1]*g*L[2,2]);
. 3
4 .

GAP Session
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gap> Display(L[2,3]);
.1
4 .

GAP Session
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Example AR | TERRY

gap> Display((L[2,1]*gxL[2,2]1)"(-1)*L[2,3]);

GAP Session
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gap> Display(L[2,4]);

GAP Session
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gap> Display ((L[2,1]*g=*L[2,2])~(-1)*L[2,3]1*L[2,4]);

GAP Session
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Example AR | TERRY

gap> r:=Result0fStraightLineProgram(L[1], StGens(10,5));;

GAP Session
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Example AR | TERRY

gap> r:=Result0fStraightLineProgram(L[1], StGens(10,5));;
gap> Display(r[1]~(-1)*r[3]*r[4]*r[2]"(-1));
1.331.313
1 4 4 2
4 4

W D W wWwN -
w - N WP wN
DO e
=N P W
N -
=N W
NN NNEFE - W W
L i S R S

N
N

N W b -
—

GAP Session
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Example AR | TERRY

gap> r:=Result0fStraightLineProgram(L[1], StGens(10,5));;
gap> Display(r[1]~(-1)*r[3]*r[4]*r[2]"(-1));
331.313

4 .3 .4 2

.1
1
4 4

= .
N Wb wN -
DO e
B
=N e
N

=N W

.. 4 3.
. 233 .1
.3 .412422 .

gap> Display(r[1]7(-1)*r[3]*r[4]*r[2]~(-1) = g);
true

GAP Session
000000000e

w -
N D NEFE P W W

W D W wWwN -
. N
L i S R S

N



Thank you for your attention!
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