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Phylogenetic Trees

I Phylogenetic trees show
the evolutionary
relationships among
species.

I Studied in bioinformatics.

I Mathematically, they are
binary, rooted trees on
n labelled leaves.

I Can be generated via a
search tree.
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Matoids – Definition

Definition

A matroid is a pair (E , I), where E is finite set, called ground set, and I
is a family of subsets of E , called independent sets, with the following
properties:

1. The empty set is independent, i.e. ∅ ∈ I.

2. Every subset of an independent subset is independent.

3. If A and B are independent sets of I and |A| > |B|, then there exists
x ∈ A \ B such that B ∪ {x} ∈ I. This property is called independet
set exchange property.

The cardinality of a maximal independent set of a matroid is called its rank.
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Matoids – Examples

Example 1 – Vector Matroids

Let E be any finite subset of a vector space V . Define I to be the subsets
of E which are linearly independent.

Example 2 – Graphic Matroids

Let G be a finite graph. Take E to be the set of edges of G and define I to
consist of all subsets of E which do not contain a simple cycle.

I Matroids are central objects in combinatorics.

I Introduced by Hassler Whitney in 1935.

I Found applications in many areas, e.g. geometry, algebra and
optimization.
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Matoids – Representability

I Matroids equivalent to
vector matroids of a
vector space over a field
K are called
representable over K .

I For example the Fano
matroid is representable
over F2 but not over any
field K with char(K ) 6= 2.

I The study of
representable matroids is
still widely open.

The Fano matroid. The ground
set are the points. A subset of
point is independent, if the point
do not lie on one line or circle.
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Matroids – Our Aims

I Want to perform experiments to study properties like representability
on a large testbed of matroids.

I Therefore, we want to generate matroids.

I For simplicity we restrict ourselves to the case of matroids of rank 3.

I In this case, they can be represented as a set of points and lines as the
Fano matroid.
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Matroids – Search Tree Structure

I The incidence structure of the points and lines can be stored as a
bipartite graph.

I We generate matroids characterized by
I the cardinality of its ground set E ,
I the vector of degrees of the lines in the bipartite graph.

I This gives rise to a search tree structure.
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Parallelized Iterator Framework

Definition

Let T be a set.
I A recursive iterator t in T is an iterator which upon popping

produces Pop(t) which is either

1. a new recursive iterator in T ,
2. an element of T , or
3. fail /∈ T .

If the pop result Pop(t) is fail then any subsequent pop result of t
remains fail.

I A full evaluation of a recursive iterator recursively pops all recursive
iterators until each of them pops fail.

I If t is a recursive iterator then the subset of elements T (t) ⊂ T
produced upon full evaluation is called the set of leaves of t.
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Parallelized Iterator Framework
Input: A recursive iterator t, a number n ∈ N>0 of workers and a global

FiFo e = () accessible by other processes.
Output: none; the side effect is to fill e with leaves in T (t)

1 Initialize a farm w of n workers w1, . . . ,wn

2 Initialize a shared prioritized queue S := (t, 0) of iterators
3 while true do
4 for all nonbusy wi parallel do
5 if NoHighestPriorityIteratorAndNoBusyWorkers(S) then
6 Add(e, fail) and return none globally

7 (ti , pti ) := Pop(S)
8 ri := Popwi

(ti ); i.e., use worker wi to pop ti
9 if ri ∈ T then

10 Add(e, ri ) and Add(S , (ti , pti ))

11 elif ri 6= fail then
12 Add(S , (ti , pti )) Add(S , (ri , pti + 1))
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Results – Phylogenetic Trees

Comparison of the run time for generating phylogenetic trees on n leaves.

n Number of GAP HPC–GAP (mm:ss) (Walltime)

Phylotrees (mm:ss) 1 2 4 8

10 4,862 00:00 00:02 00:01 00:02 00:03

11 16,796 00:01 00:08 00:06 00:05 00:07

12 58,786 00:02 00:19 00:20 00:21 00:25

13 208,012 00:08 01:16 01:07 01:09 01:31

14 742,900 00:31 03:57 04:07 03:58 05:19

15 2,674,440 01:34 13:08 14:15 13:57 17:06
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Results – Matroids

Comparison of the run time for generating simple rank 3 matroids with
ground set of cardinality n.

n Number of GAP HPC–GAP (hh:mm:ss) (Walltime)

Matroids (hh:mm:ss) 1 2 4 8

7 23 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00

8 68 00:00:09 00:00:09 00:00:06 00:00:06 00:00:05

9 383 00:08:43 00:08:48 00:06:22 00:05:19 00:05:15

10 5249 ? ? ? ? ?

I 11: 232928

I 12: 28872972

I 13: Unknown
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Summary

I We want to study properties like representability on a large set of
matroids.

I To this end we have developed a general framework of parallelized
iterators in HPC-GAP.

I We have linked it to a database using ArangoDB.

I Maybe this general setup is also useful in other situations?

17



Thank you for your attention!
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