Generating Matroids using HPC-GAP and ArangoDB

Lukas Kühne

August 31, 2017

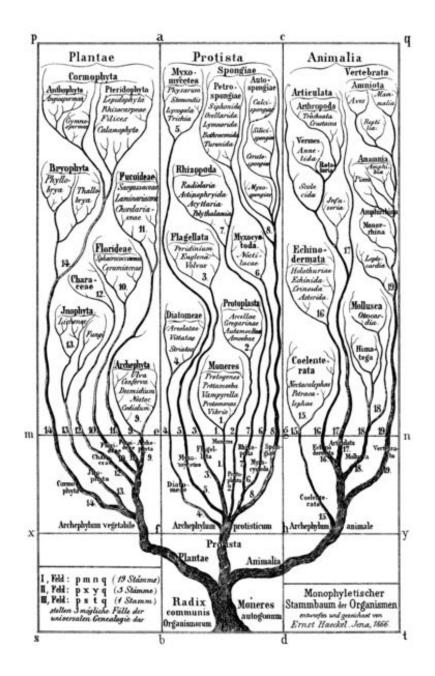
Joint work with Mohamed Barakat, Reimer Behrends, and Chris Jefferson

Outline

- 1. Motivation
 - Phylogenetic trees
 - Matroids
- 2. Parallelized iterator framework
- 3. Results
- 4. ArangoDB

Phylogenetic Trees

- Phylogenetic trees show the evolutionary relationships among species.
- Studied in bioinformatics.
- Mathematically, they are binary, rooted trees on n labelled leaves.
- Can be generated via a search tree.



Matoids – Definition

Definition

A matroid is a pair (E, \mathcal{I}) , where *E* is finite set, called **ground set**, and \mathcal{I} is a family of subsets of *E*, called **independent sets**, with the following properties:

- 1. The empty set is independent, i.e. $\emptyset \in \mathcal{I}$.
- 2. Every subset of an independent subset is independent.
- If A and B are independent sets of I and |A| > |B|, then there exists x ∈ A \ B such that B ∪ {x} ∈ I. This property is called independet set exchange property.

The cardinality of a maximal independent set of a matroid is called its rank.

Matoids – Examples

Example 1 – Vector Matroids

Let *E* be any finite subset of a vector space *V*. Define \mathcal{I} to be the subsets of *E* which are linearly independent.

Matoids – Examples

Example 1 – Vector Matroids

Let *E* be any finite subset of a vector space *V*. Define \mathcal{I} to be the subsets of *E* which are linearly independent.

Example 2 – Graphic Matroids

Let G be a finite graph. Take E to be the set of edges of G and define \mathcal{I} to consist of all subsets of E which do not contain a simple cycle.

Matoids – Examples

Example 1 – Vector Matroids

Let *E* be any finite subset of a vector space *V*. Define \mathcal{I} to be the subsets of *E* which are linearly independent.

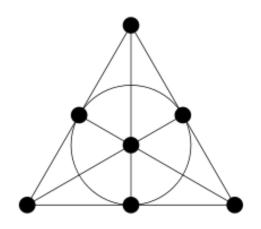
Example 2 – Graphic Matroids

Let G be a finite graph. Take E to be the set of edges of G and define \mathcal{I} to consist of all subsets of E which do not contain a simple cycle.

- Matroids are central objects in combinatorics.
- Introduced by Hassler Whitney in 1935.
- Found applications in many areas, e.g. geometry, algebra and optimization.

Matoids – Representability

- Matroids equivalent to vector matroids of a vector space over a field *K* are called representable over *K*.
- For example the Fano matroid is representable over 𝔽₂ but not over any field K with char(K) ≠ 2.
- The study of representable matroids is still widely open.



The Fano matroid. The ground set are the points. A subset of point is independent, if the point do not lie on one line or circle.

- Want to perform experiments to study properties like representability on a large testbed of matroids.
- Therefore, we want to generate matroids.
- ► For simplicity we restrict ourselves to the case of matroids of rank 3.
- In this case, they can be represented as a set of points and lines as the Fano matroid.

Matroids – Search Tree Structure

- The incidence structure of the points and lines can be stored as a bipartite graph.
- We generate matroids characterized by
 - the cardinality of its ground set E,
 - the vector of degrees of the lines in the bipartite graph.
- This gives rise to a search tree structure.

Definition

Let T be a set.

- A recursive iterator t in T is an iterator which upon popping produces Pop(t) which is either
 - 1. a new recursive iterator in T,
 - 2. an element of T, or
 - 3. fail $\notin T$.

If the pop result Pop(t) is fail then any subsequent pop result of t remains fail.

Definition

Let T be a set.

- A recursive iterator t in T is an iterator which upon popping produces Pop(t) which is either
 - 1. a new recursive iterator in T,
 - 2. an element of T, or
 - 3. fail $\notin T$.

If the pop result Pop(t) is fail then any subsequent pop result of t remains fail.

A full evaluation of a recursive iterator recursively pops all recursive iterators until each of them pops fail.

Definition

Let T be a set.

- A recursive iterator t in T is an iterator which upon popping produces Pop(t) which is either
 - 1. a new recursive iterator in T,
 - 2. an element of T, or
 - 3. fail $\notin T$.

If the pop result Pop(t) is fail then any subsequent pop result of t remains fail.

- A full evaluation of a recursive iterator recursively pops all recursive iterators until each of them pops fail.
- If t is a recursive iterator then the subset of elements T(t) ⊂ T produced upon full evaluation is called the set of leaves of t.

- **Input:** A recursive iterator *t*, a number $n \in \mathbb{N}_{>0}$ of workers and a global FiFo e = () accessible by other processes.
- **Output:** none; the side effect is to fill e with leaves in T(t)
- 1 Initialize a farm w of n workers w_1, \ldots, w_n
- 2 Initialize a shared prioritized queue S := (t, 0) of iterators
- 3 while true do

4

5

6

7

8

9

10

11

12

for all nonbusy *w_i* parallel do

$$(t_i, p_{t_i}) := \operatorname{Pop}(S)$$

 $r_i := \operatorname{Pop}_{w_i}(t_i)$; i.e., use worker w_i to pop t_i

if $r_i \in T$ then

Add
$$(e, r_i)$$
 and Add $(S, (t_i, p_{t_i}))$

 $\begin{array}{l} \textbf{elif } r_i \neq \texttt{fail then} \\ & \left\lfloor \ \texttt{Add}(S,(t_i,p_{t_i})) \ \texttt{Add}(S,(r_i,p_{t_i}+1)) \end{array} \right. \end{array}$

Results – Phylogenetic Trees

Comparison of the run time for generating phylogenetic trees on n leaves.

n	Number of	GAP	HPC–GAP (mm:ss) (Walltime)				
	Phylotrees	(mm:ss)	1	2	4	8	
10	4,862	00:00	00:02	00:01	00:02	00:03	
11	16,796	00:01	00:08	00:06	00:05	00:07	
12	58,786	00:02	00:19	00:20	00:21	00:25	
13	208,012	80:00	01:16	01:07	01:09	01:31	
14	742,900	00:31	03:57	04:07	03:58	05:19	
15	2,674,440	01:34	13:08	14:15	13:57	17:06	

Results – Matroids

Comparison of the run time for generating simple rank 3 matroids with ground set of cardinality n.

п	Number of	GAP	HPC–GAP (hh:mm:ss) (Walltime)					
	Matroids	(hh:mm:ss)	1	2	4	8		
7	23	00:00:01	00:00:00	00:00:00	00:00:00	00:00:00		
8	68	00:00:09	00:00:09	00:00:06	00:00:06	00:00:05		
9	383	00:08:43	00:08:48	00:06:22	00:05:19	00:05:15		
10	5249	?	?	?	?	?		

- ▶ 11: 232928
- ▶ 12: 28872972
- 13: Unknown

Summary

- We want to study properties like representability on a large set of matroids.
- To this end we have developed a general framework of parallelized iterators in HPC-GAP.
- We have linked it to a database using ArangoDB.
- Maybe this general setup is also useful in other situations?

Thank you for your attention!