& ArangoDB

ArangoDB

Siegen, 31 August 2017

Max Neunhoffer

www.arangodb.com

Documents (JSON)

In this talk, when | say “document”, mean JSON document:

JSON example

{
"name": "Neunhoffer", "firstName": "Max",
"address": { "street": "Im Bendchen", "number": "35a",
"town": "Kerpen", zip: 50169 },
"height": 1.80, "blabla": null,
"isHere": true, "isAway": false,
"children": ["Savina", "Phil"]

The Multi-Model Approach

Multi-model database

A multi-model database combines a document store with a graph
database and is at the same time a key/value store,

The Multi-Model Approach

Multi-model database
A multi-model database combines a document store with a graph

database and is at the same time a key/value store,
with a common query language for all three data models.

The Multi-Model Approach

Multi-model database
A multi-model database combines a document store with a graph

database and is at the same time a key/value store,
with a common query language for all three data models.

Important:
D is able to compete with specialised products on their turf

The Multi-Model Approach

Multi-model database
A multi-model database combines a document store with a graph

database and is at the same time a key/value store,
with a common query language for all three data models.

Important:
D is able to compete with specialised products on their turf

P allows for polyglot persistence using a single database technology

The Multi-Model Approach

Multi-model database
A multi-model database combines a document store with a graph

database and is at the same time a key/value store,
with a common query language for all three data models.

Important:
D is able to compete with specialised products on their turf

P allows for polyglot persistence using a single database technology

» In a microservice architecture, there will be several different deployments.

Relational database vs. document store

Comparison

| Relational database | Document store |

table collection

row JSON document

schema of columns | schema-free

SQL query other, JSON-centric languages

standardized wide variety

data normalization choice between embedding and normalization
joins many stores do not offer joins (ArangoDB does!)

Use case: Aircraft fleet management

Use case: Aircraft fleet management

One of our customers uses ArangoDB to

P store each part, component, unit or aircraft as a document
P model containment as a graph

P thus can easily find all parts of some component

P keep track of maintenance intervals

» perform queries orthogonal to the graph structure

» thereby getting good efficiency for all needed queries

http://radar.oreilly.com/2015/07/
data-modeling-with-multi-model-databases.html

http://radar.oreilly.com/2015/07/data-modeling-with-multi-model-databases.html
http://radar.oreilly.com/2015/07/data-modeling-with-multi-model-databases.html

Why is multi-model possible at all?

Document stores and key/value stores

Document stores: have primary key, are key/value stores.

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/

Why is multi-model possible at all?

Document stores and key/value stores

Document stores: have primary key, are key/value stores.

Without using secondary indexes, performance is nearly as good as with
opaque data instead of JSON.

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/

Why is multi-model possible at all?

Document stores and key/value stores

Document stores: have primary key, are key/value stores.

Without using secondary indexes, performance is nearly as good as with
opaque data instead of JSON.

Good horizontal scalability can be achieved for key lookups.

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/

Why is multi-model possible at all?

Document stores and graph databases

Graph database: would like to associate arbitrary data with vertices and
edges, so JSON documents are a good choice.

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/

Why is multi-model possible at all?

Document stores and graph databases

Graph database: would like to associate arbitrary data with vertices and
edges, so JSON documents are a good choice.

P A good edge index, giving fast access to neighbours.
This can be a secondary index.

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/

Why is multi-model possible at all?

Document stores and graph databases

Graph database: would like to associate arbitrary data with vertices and
edges, so JSON documents are a good choice.

P A good edge index, giving fast access to neighbours.
This can be a secondary index.

» Graph support in the query language.

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/

Why is multi-model possible at all?

Document stores and graph databases

Graph database: would like to associate arbitrary data with vertices and
edges, so JSON documents are a good choice.

P A good edge index, giving fast access to neighbours.
This can be a secondary index.
» Graph support in the query language.

» Implementations of graph algorithms in the DB engine.

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/

@ ArangoDB AQL: Powerful query language

AQL
The built in Arango Query Language allows
» complex, powerful and convenient queries,

@ ArangoDB AQL: Powerful query language

AQL
The built in Arango Query Language allows
» complex, powerful and convenient queries,

» to mix all three data models in a query,

@ ArangoDB AQL: Powerful query language

AQL

The built in Arango Query Language allows
» complex, powerful and convenient queries,
» to mix all three data models in a query,

P with transactional semantics,

@ ArangoDB AQL: Powerful query language

AQL

The built in Arango Query Language allows
» complex, powerful and convenient queries,
» to mix all three data models in a query,
P with transactional semantics,

» to dojoins (like in the relational model),

@ ArangoDB AQL: Powerful query language

AQL
The built in Arango Query Language allows
» complex, powerful and convenient queries,
» to mix all three data models in a query,
P with transactional semantics,
» to dojoins (like in the relational model),
» AQL is independent of the driver used and

@ ArangoDB AQL: Powerful query language

AQL
The built in Arango Query Language allows
» complex, powerful and convenient queries,
» to mix all three data models in a query,
P with transactional semantics,
» to dojoins (like in the relational model),
» AQL is independent of the driver used and

b offers protection against injections by design.

) DB AQL: Powerful query language

FOR user IN users
RETURN user

) DB AQL: Powerful query language

FOR user IN users
FILTER user.name == ’alice’
RETURN user

Alice

) DB AQL: Powerful query language

FOR user IN users
FILTER user.name == ’alice’
FOR product IN OUTBOUND user has_bought
RETURN product

. has_bought
Alice D08

) DB AQL: Powerful query language

FOR user IN users

FILTER user.name == ’alice’

FOR recommendation, action, path IN 3 ANY user has_bought
FILTER path.vertices[2].age <= user.age + 5

AND path.vertices[2].age >= user.age - 5

FILTER recommendation.price < 25
LIMIT 10
RETURN recommendation

alice.age - 5 <= bob.age &&
bob.age <= alice.age + 5 playstation.price < 25

has_bought has_bought Bob has_bought

Alice Playstation

@ ArangoDB Extensible through JavaScript

The Foxx Microservice Framework

Allows you to extend the HTTP/REST API by your own routes, which you
implement in JavaScript running on the database server, with direct access
to the C++ DB engine.

@ ArangoDB Extensible through JavaScript

The Foxx Microservice Framework

Allows you to extend the HTTP/REST API by your own routes, which you
implement in JavaScript running on the database server, with direct access
to the C++ DB engine.

Unprecedented possibilities for data centric services:
» complex queries or authorizations, schema-validation, push feeds, etc.

@ ArangoDB Extensible through JavaScript

The Foxx Microservice Framework

Allows you to extend the HTTP/REST API by your own routes, which you
implement in JavaScript running on the database server, with direct access
to the C++ DB engine.

Unprecedented possibilities for data centric services:
» complex queries or authorizations, schema-validation, push feeds, etc.
P easy deployment via web interface or REST AP,

@ ArangoDB Extensible through JavaScript

The Foxx Microservice Framework

Allows you to extend the HTTP/REST API by your own routes, which you
implement in JavaScript running on the database server, with direct access
to the C++ DB engine.

Unprecedented possibilities for data centric services:
» complex queries or authorizations, schema-validation, push feeds, etc.
P easy deployment via web interface or REST AP,
P automatic API description through Swagger —> discoverability of services.

@ ArangoDB : A distributed, fault-tolerant system

ArangoDB provides (Version 3.2, August 2017)

» Sharding with automatic data distribution,

P easy setup of replication (synchronous and asynchronous),

P fault tolerance by automatic failover,

P self-repairing and self-balancing cluster architecture,

P full integration with Apache Mesos and Mesosphere DCOS,

P easy deployment and scaling on various cloud orchestration tools.

@ ArangoDB : A distributed, fault-tolerant system

ArangoDB provides (Version 3.2, August 2017)

» Sharding with automatic data distribution,

P easy setup of replication (synchronous and asynchronous),

P fault tolerance by automatic failover,

P self-repairing and self-balancing cluster architecture,

P full integration with Apache Mesos and Mesosphere DCOS,

P easy deployment and scaling on various cloud orchestration tools.

Work in progress (Version 3.3, October 2017):
P asynchronous data center to data center replication,

@ ArangoDB : A distributed, fault-tolerant system

ArangoDB provides (Version 3.2, August 2017)

» Sharding with automatic data distribution,

P easy setup of replication (synchronous and asynchronous),

P fault tolerance by automatic failover,

P self-repairing and self-balancing cluster architecture,

P full integration with Apache Mesos and Mesosphere DCOS,

P easy deployment and scaling on various cloud orchestration tools.

Work in progress (Version 3.3, October 2017):
P asynchronous data center to data center replication,
» Distributed transactions.

O) DB horizontal scalability

Experiment: Single document writes (1kB / doc) on cluster of sizes 8 to 80 machi-
nes (64 to 640 vCPUs), another 4 to 40 load servers, running on AWS.

0 10 20 30 40 50 60 70 80

https://mesosphere.com/blog/2015/11/30/arangodb-benchmark-dcos/

https://mesosphere.com/blog/2015/11/30/arangodb-benchmark-dcos/

Easy deployment

» Binary packages for various Linux variants, Windows and MacOS
» Docker images

P Thereis a tool for easy cluster deployment “ArangoDB starter”

» For Apache Mesos and DC/OS there is a framework scheduler

» Cloud orchestration tools like Kubernetes and Docker Swarm are possible

https://www.arangodb.com

https://docs.arangodb. com
http://mesos.apache.org/
https://mesosphere.com/

https://mesosphere.github.io/marathon/

https://www.arangodb.com
https://docs.arangodb.com
http://mesos.apache.org/
https://mesosphere.com/
https://mesosphere.github.io/marathon/

