
ArangoDB

Max Neunhöffer

Siegen, 31 August 2017

www.arangodb.com

www.arangodb.com


Documents (JSON)
In this talk, when I say “document“, I mean JSON document:

JSON example
{

"name": "Neunhöffer", "firstName": "Max",
"address": { "street": "Im Bendchen", "number": "35a",

"town": "Kerpen", zip: 50169 },
"height": 1.80, "blabla": null,
"isHere": true, "isAway": false,
"children": ["Savina", "Phil"]

}



The Multi-Model Approach

Multi-model database
A multi-model database combines a document store with a graph
database and is at the same time a key/value store,

with a common query language for all three data models.

Important:
is able to compete with specialised products on their turf
allows for polyglot persistence using a single database technology
In a microservice architecture, there will be several different deployments.



The Multi-Model Approach

Multi-model database
A multi-model database combines a document store with a graph
database and is at the same time a key/value store,
with a common query language for all three data models.

Important:
is able to compete with specialised products on their turf
allows for polyglot persistence using a single database technology
In a microservice architecture, there will be several different deployments.



The Multi-Model Approach

Multi-model database
A multi-model database combines a document store with a graph
database and is at the same time a key/value store,
with a common query language for all three data models.

Important:
is able to compete with specialised products on their turf

allows for polyglot persistence using a single database technology
In a microservice architecture, there will be several different deployments.



The Multi-Model Approach

Multi-model database
A multi-model database combines a document store with a graph
database and is at the same time a key/value store,
with a common query language for all three data models.

Important:
is able to compete with specialised products on their turf
allows for polyglot persistence using a single database technology

In a microservice architecture, there will be several different deployments.



The Multi-Model Approach

Multi-model database
A multi-model database combines a document store with a graph
database and is at the same time a key/value store,
with a common query language for all three data models.

Important:
is able to compete with specialised products on their turf
allows for polyglot persistence using a single database technology
In a microservice architecture, there will be several different deployments.



Relational database vs. document store

Comparison
Relational database Document store
table collectionrow JSON documentschema of columns schema-freeSQL query other, JSON-centric languagesstandardized wide varietydata normalization choice between embedding and normalizationjoins many stores do not offer joins (ArangoDB does!)



Use case: Aircraft fleet management



Use case: Aircraft fleet management
One of our customers uses ArangoDB to

store each part, component, unit or aircraft as a document
model containment as a graph
thus can easily find all parts of some component
keep track of maintenance intervals
perform queries orthogonal to the graph structure
thereby getting good efficiency for all needed queries

http://radar.oreilly.com/2015/07/
data-modeling-with-multi-model-databases.html

http://radar.oreilly.com/2015/07/data-modeling-with-multi-model-databases.html
http://radar.oreilly.com/2015/07/data-modeling-with-multi-model-databases.html


Why is multi-model possible at all?

Document stores and key/value stores
Document stores: have primary key, are key/value stores.

Without using secondary indexes, performance is nearly as good as withopaque data instead of JSON.
Good horizontal scalability can be achieved for key lookups.

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/


Why is multi-model possible at all?

Document stores and key/value stores
Document stores: have primary key, are key/value stores.
Without using secondary indexes, performance is nearly as good as withopaque data instead of JSON.

Good horizontal scalability can be achieved for key lookups.

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/


Why is multi-model possible at all?

Document stores and key/value stores
Document stores: have primary key, are key/value stores.
Without using secondary indexes, performance is nearly as good as withopaque data instead of JSON.
Good horizontal scalability can be achieved for key lookups.

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/


Why is multi-model possible at all?

Document stores and graph databases
Graph database: would like to associate arbitrary data with vertices andedges, so JSON documents are a good choice.

A good edge index, giving fast access to neighbours.This can be a secondary index.
Graph support in the query language.
Implementations of graph algorithms in the DB engine.

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/


Why is multi-model possible at all?

Document stores and graph databases
Graph database: would like to associate arbitrary data with vertices andedges, so JSON documents are a good choice.

A good edge index, giving fast access to neighbours.This can be a secondary index.

Graph support in the query language.
Implementations of graph algorithms in the DB engine.

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/


Why is multi-model possible at all?

Document stores and graph databases
Graph database: would like to associate arbitrary data with vertices andedges, so JSON documents are a good choice.

A good edge index, giving fast access to neighbours.This can be a secondary index.
Graph support in the query language.

Implementations of graph algorithms in the DB engine.

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/


Why is multi-model possible at all?

Document stores and graph databases
Graph database: would like to associate arbitrary data with vertices andedges, so JSON documents are a good choice.

A good edge index, giving fast access to neighbours.This can be a secondary index.
Graph support in the query language.
Implementations of graph algorithms in the DB engine.

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/

https://www.arangodb.com/2015/10/benchmark-postgresql-mongodb-arangodb/


AQL: Powerful query language

AQL
The built in Arango Query Language allows

complex, powerful and convenient queries,

to mix all three data models in a query,
with transactional semantics,
to do joins (like in the relational model),
AQL is independent of the driver used and
offers protection against injections by design.



AQL: Powerful query language

AQL
The built in Arango Query Language allows

complex, powerful and convenient queries,
to mix all three data models in a query,

with transactional semantics,
to do joins (like in the relational model),
AQL is independent of the driver used and
offers protection against injections by design.



AQL: Powerful query language

AQL
The built in Arango Query Language allows

complex, powerful and convenient queries,
to mix all three data models in a query,
with transactional semantics,

to do joins (like in the relational model),
AQL is independent of the driver used and
offers protection against injections by design.



AQL: Powerful query language

AQL
The built in Arango Query Language allows

complex, powerful and convenient queries,
to mix all three data models in a query,
with transactional semantics,
to do joins (like in the relational model),

AQL is independent of the driver used and
offers protection against injections by design.



AQL: Powerful query language

AQL
The built in Arango Query Language allows

complex, powerful and convenient queries,
to mix all three data models in a query,
with transactional semantics,
to do joins (like in the relational model),
AQL is independent of the driver used and

offers protection against injections by design.



AQL: Powerful query language

AQL
The built in Arango Query Language allows

complex, powerful and convenient queries,
to mix all three data models in a query,
with transactional semantics,
to do joins (like in the relational model),
AQL is independent of the driver used and
offers protection against injections by design.



AQL: Powerful query language
FOR user IN users

RETURN user



AQL: Powerful query language
FOR user IN users

FILTER user.name == ’alice’
RETURN user



AQL: Powerful query language
FOR user IN users

FILTER user.name == ’alice’
FOR product IN OUTBOUND user has_bought

RETURN product



AQL: Powerful query language
FOR user IN users

FILTER user.name == ’alice’
FOR recommendation, action, path IN 3 ANY user has_bought

FILTER path.vertices[2].age <= user.age + 5
AND path.vertices[2].age >= user.age - 5

FILTER recommendation.price < 25
LIMIT 10
RETURN recommendation



Extensible through JavaScript

The Foxx Microservice Framework
Allows you to extend the HTTP/REST API by your own routes, which you
implement in JavaScript running on the database server, with direct access
to the C++ DB engine.

Unprecedented possibilities for data centric services:
complex queries or authorizations, schema-validation, push feeds, etc.
easy deployment via web interface or REST API,
automatic API description through Swagger =⇒ discoverability of services.



Extensible through JavaScript

The Foxx Microservice Framework
Allows you to extend the HTTP/REST API by your own routes, which you
implement in JavaScript running on the database server, with direct access
to the C++ DB engine.

Unprecedented possibilities for data centric services:
complex queries or authorizations, schema-validation, push feeds, etc.

easy deployment via web interface or REST API,
automatic API description through Swagger =⇒ discoverability of services.



Extensible through JavaScript

The Foxx Microservice Framework
Allows you to extend the HTTP/REST API by your own routes, which you
implement in JavaScript running on the database server, with direct access
to the C++ DB engine.

Unprecedented possibilities for data centric services:
complex queries or authorizations, schema-validation, push feeds, etc.
easy deployment via web interface or REST API,

automatic API description through Swagger =⇒ discoverability of services.



Extensible through JavaScript

The Foxx Microservice Framework
Allows you to extend the HTTP/REST API by your own routes, which you
implement in JavaScript running on the database server, with direct access
to the C++ DB engine.

Unprecedented possibilities for data centric services:
complex queries or authorizations, schema-validation, push feeds, etc.
easy deployment via web interface or REST API,
automatic API description through Swagger =⇒ discoverability of services.



: A distributed, fault-tolerant system
ArangoDB provides (Version 3.2, August 2017)

Sharding with automatic data distribution,
easy setup of replication (synchronous and asynchronous),
fault tolerance by automatic failover,
self-repairing and self-balancing cluster architecture,
full integration with Apache Mesos and Mesosphere DCOS,
easy deployment and scaling on various cloud orchestration tools.

Work in progress (Version 3.3, October 2017):
asynchronous data center to data center replication,
Distributed transactions.



: A distributed, fault-tolerant system
ArangoDB provides (Version 3.2, August 2017)

Sharding with automatic data distribution,
easy setup of replication (synchronous and asynchronous),
fault tolerance by automatic failover,
self-repairing and self-balancing cluster architecture,
full integration with Apache Mesos and Mesosphere DCOS,
easy deployment and scaling on various cloud orchestration tools.

Work in progress (Version 3.3, October 2017):
asynchronous data center to data center replication,

Distributed transactions.



: A distributed, fault-tolerant system
ArangoDB provides (Version 3.2, August 2017)

Sharding with automatic data distribution,
easy setup of replication (synchronous and asynchronous),
fault tolerance by automatic failover,
self-repairing and self-balancing cluster architecture,
full integration with Apache Mesos and Mesosphere DCOS,
easy deployment and scaling on various cloud orchestration tools.

Work in progress (Version 3.3, October 2017):
asynchronous data center to data center replication,
Distributed transactions.



horizontal scalability
Experiment: Single document writes (1kB / doc) on cluster of sizes 8 to 80 machi-nes (64 to 640 vCPUs), another 4 to 40 load servers, running on AWS.

https://mesosphere.com/blog/2015/11/30/arangodb-benchmark-dcos/

https://mesosphere.com/blog/2015/11/30/arangodb-benchmark-dcos/


Easy deployment

Binary packages for various Linux variants, Windows and MacOS
Docker images
There is a tool for easy cluster deployment “ArangoDB starter“
For Apache Mesos and DC/OS there is a framework scheduler
Cloud orchestration tools like Kubernetes and Docker Swarm are possible



Links

https://www.arangodb.com

https://docs.arangodb.com

http://mesos.apache.org/

https://mesosphere.com/

https://mesosphere.github.io/marathon/

https://www.arangodb.com
https://docs.arangodb.com
http://mesos.apache.org/
https://mesosphere.com/
https://mesosphere.github.io/marathon/

