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Question

Let k be a commutative ring with unity and
A = k[X] = k[X1, . . . , Xn] be a polynomial ring over k. Let
M be a finitely presented module over A.
Then the problem is to find a minimal generating set for M .
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In 1955 J.-P. Serre asked the question whether any projective
module over a polynomial ring k[X1, . . . , Xn] in several
variables over a field is free, which is known as Serre’s
conjecture [Ser 55] .
The conjecture was proved (independently) by D. Quillen and
A. Suslin [Qui 76, Sus 76].

Theorem (Serre’s Conjecture – Quillen-Suslin Theorem
[Qui 76, Sus 76])

If k is a field then every projective module over a polynomial
ring k[X1, . . . , Xn] is free.

In geometric language, Serre’s Problem simply translates to: Is
every vector bundle over An

k trivial?

Vinay Wagh LessGenerators



The Problem
Algorithmic / Computational aspects

The Package – LessGenerators
Example

Reference

Introduction
Quillen-Suslin Theorem
Some important results for the proof

In 1955 J.-P. Serre asked the question whether any projective
module over a polynomial ring k[X1, . . . , Xn] in several
variables over a field is free, which is known as Serre’s
conjecture [Ser 55] .
The conjecture was proved (independently) by D. Quillen and
A. Suslin [Qui 76, Sus 76].

Theorem (Serre’s Conjecture – Quillen-Suslin Theorem
[Qui 76, Sus 76])

If k is a field then every projective module over a polynomial
ring k[X1, . . . , Xn] is free.

In geometric language, Serre’s Problem simply translates to: Is
every vector bundle over An

k trivial?

Vinay Wagh LessGenerators



The Problem
Algorithmic / Computational aspects

The Package – LessGenerators
Example

Reference

Introduction
Quillen-Suslin Theorem
Some important results for the proof

In 1955 J.-P. Serre asked the question whether any projective
module over a polynomial ring k[X1, . . . , Xn] in several
variables over a field is free, which is known as Serre’s
conjecture [Ser 55] .
The conjecture was proved (independently) by D. Quillen and
A. Suslin [Qui 76, Sus 76].

Theorem (Serre’s Conjecture – Quillen-Suslin Theorem
[Qui 76, Sus 76])

If k is a field then every projective module over a polynomial
ring k[X1, . . . , Xn] is free.

In geometric language, Serre’s Problem simply translates to: Is
every vector bundle over An

k trivial?

Vinay Wagh LessGenerators



The Problem
Algorithmic / Computational aspects

The Package – LessGenerators
Example

Reference

Introduction
Quillen-Suslin Theorem
Some important results for the proof

In 1955 J.-P. Serre asked the question whether any projective
module over a polynomial ring k[X1, . . . , Xn] in several
variables over a field is free, which is known as Serre’s
conjecture [Ser 55] .
The conjecture was proved (independently) by D. Quillen and
A. Suslin [Qui 76, Sus 76].

Theorem (Serre’s Conjecture – Quillen-Suslin Theorem
[Qui 76, Sus 76])

If k is a field then every projective module over a polynomial
ring k[X1, . . . , Xn] is free.

In geometric language, Serre’s Problem simply translates to: Is
every vector bundle over An

k trivial?

Vinay Wagh LessGenerators



The Problem
Algorithmic / Computational aspects

The Package – LessGenerators
Example

Reference

Introduction
Quillen-Suslin Theorem
Some important results for the proof

Here is an alternate version in a slightly general situation:

Theorem (Serre’s Conjecture – Alternate formulation)

Let k be a principal ideal domain and A = k[X1, . . . , Xn] a
polynomial ring with coefficients in k. Let R be a right
invertible matrix of size p× q. Then, there exists a unimodular
matrix U ∈ GLp(A) satisfying:

RU = (Iq 0).

Thus, the problem gets reduced to completion of unimodular
row to an invertible matrix.
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The following result by Quillen plays a crucial role in proving
the Quillen-Suslin theorem.

Theorem (Suslin’s Lemma[Rot 08])

Let B be a commutative ring, let s ≥ 1, and consider
polynomials in B[y]:

f(x) = ys+a1y
s−1 + . . .+ as

g(x) = b1y
s−1 + . . .+ bs

Then, for each j with 1 ≤ j ≤ s− 1, the ideal (f, g) ⊂ B[y]
contains a polynomial of degree atmost s− 1 having leading
coefficient bj.

Using this result, Suslin gave a proof of the following result by
Horrocks:
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Theorem (Horrocks)

Let R = B[y], where B is a local ring, and let
α = (a1, . . . , an) ∈ Rn be a unimodular column. If some ai is
monic, then α is the first column of some invertible matrix in
GL(n,R).
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The following result was proved by Vaserstein:

Theorem ([Rot 08])

Let B be a domain, let R = B[y], and let α(y) be a
unimodular column at least one of whose coordinates is monic,
say, α(y) = α1(y), . . . , αn(y). Then

α(y) =M(y) · β

where M(y) ∈ GLn(R) and β is a unimodular column over B.
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Using these results, one can prove Serre’s conjecture
inductively, using induction on the number of variables. i.e.
reducing one variable at every step.

Theorem (Quillen-Suslin)

If k is a field, then every finitely generated projective
k[x1, . . . , xm]-module is free.
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In 1992, Logar and Sturmfels, gave algorithmic proof of the
Quillen-Suslin theorem.
This algorithm uses induction on the number of variables n,
and it consists of two main parts:

Local Loop: which generates solutions for finitely
many suitable local rings

Patching: in which all these “local” solutions are
patched together to get a global solution.
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After proving Serre’s conjecture, Suslin in 1977, proved the
following K1-analogue of Serre’s conjecture:

Theorem (Suslin’s stability theorem[Sus 77])

Let R be a commutative Noetherian ring. Let
n ≥ max(3, dim(R) + 2). Let A = (fij) be an n× n-matrix
of determinant 1 with entries in the polynomial ring
R[x1 . . . , xm]. Then A can be written as a product of
elementary matrices over R[x1 . . . , xm].

In other words,

SLn(R[x1 . . . , xm]) = En(R[x1 . . . , xm]),

for n ≥ max(3, dim(R) + 2) where En(R[x1 . . . , xm]) denotes
the subgroup of elementary matrices over R[x1 . . . , xm].

Vinay Wagh LessGenerators



The Problem
Algorithmic / Computational aspects

The Package – LessGenerators
Example

Reference

Logar-Sturmfels
Park-Woodburn
Anna Fabiaǹska
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In 1995, H. Park and C. Woodburn[PW 95] gave an
algorithmic proof of this equality. i.e. given any matrix
A ∈ SLn(R[x1 . . . , xm]), the algorithm produces a sequence
E1, . . . , Ek of matrices in En(R[x1 . . . , xm]) such that
A = E1 · E2 · . . . · Ek.
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During 2004–2009, Anna Fabiaǹska implemented the
Logar-Sturmfels algorithm in a computer algebra system
MAPLE. The implementation is through packages called
QuillenSuslin and involutive [Fab].
The main advantage of this implementation is that the result
(Quillen-Suslin algorithm) can be applied to the unimodular
matrices over a polynomial ring whose coefficients ring can be
a finite field, number field or ring of integers.
However it cannot be applied to the field of complex numbers
as mentioned in Logar-Sturmfels algorithm.
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Logar-Sturmfels algorithm in a computer algebra system
MAPLE. The implementation is through packages called
QuillenSuslin and involutive [Fab].
The main advantage of this implementation is that the result
(Quillen-Suslin algorithm) can be applied to the unimodular
matrices over a polynomial ring whose coefficients ring can be
a finite field, number field or ring of integers.
However it cannot be applied to the field of complex numbers
as mentioned in Logar-Sturmfels algorithm.

Vinay Wagh LessGenerators



The Problem
Algorithmic / Computational aspects

The Package – LessGenerators
Example

Reference

Introduction
Features of LessGenerators
Dependencies with other packages
Limitations of the Package

In 2012, I, along with Dr. Mohamed Barakat, started a project
called LessGenerators, to implement the Quillen-Suslin
algorithm using computer algebra systems Singular and
GAP.
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The package is based on the homalg project. The aim of
the package LessGenerators is to provide a tool for
finding a minimal generating set for a given module.

The package provides a partial support for the
localization of the baserings at prime ideals. e.g.
k[X1, . . . , Xn−1]℘[Xn]

Using this, we implement the Suslin Lemma, theorem of
Horrocks and patching of local solutions as mentioned in
Logar-Sturmfels algorithm for all computable fields of
char 0 in this package.

The structure of the package is in sync with the base
concept of the homalg project and provides universal
implementation in the sense of CASs. i.e. it can use any
CAS supported by the homalg project for ring arithmetic.
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The package depends mainly upon the following packages
from homalg project:

Modules

homalg

RingsForHomalg

LocalizeRingForHomalg

MatricesForHomalg

GAPDoc
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Using the package LocalizeRingForHomalg, one can
compute the localization of a polynomial ring by a
maximal ideal.

The Logar-Strumfels algorithm uses local rings, which are
obtained using localization at prime ideals. The
functionality of localization at prime ideals is partially
added to LocalizeRingForHomalg. Through this, one
can use the polynomial ring over local ring
k[X1, . . . , Xn−1]℘[Xn].
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gap> Q := HomalgFieldOfRationalsInSingular( );;
gap> R := ( Q * ”x” ) * ”y”;
Singular output supressed...

Q[x][y]
gap> m := HomalgMatrix( ”[
2 ∗ x2 + 2 ∗ x ∗ y + y2 + 1,x ∗ y + y2 + x,x+ y, x ∗ y + y2 + x,
y2 + 1, y ]”, 2, 3, R );
<A 2 x 3 matrix over an external ring>
gap> M := LeftPresentation( m );
<A non-torsion left module presented by 2 relations for 3
generators>
gap> IsStablyFree( M );
true
gap> M;
<A free left module of rank 1 on 3 non-free generators satisfying 3
relations>
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gap> LoadPackage( "LessGenerators" );

true

gap> R := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y";

$\ldots$ Singular output supressed$\ldots$

Q[x,y]

gap> m := HomalgMatrix( "[ \

> 2*x^2+2*x*y+y^2+1,x*y+y^2+x,x+y,\

> x*y+y^2+x, y^2+1, y \

> ]", 2, 3, R );

<A 2 x 3 matrix over an external ring>

gap> M := LeftPresentation( m );

<A non-torsion left module presented by 2 relations for 3 generators>

gap>

gap> IsStablyFree( M );M;

true

<A free left module of rank 1 on 3 non-free generators satisfying 3 relations>

Vinay Wagh LessGenerators



The Problem
Algorithmic / Computational aspects

The Package – LessGenerators
Example

Reference
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