
HPC-GAP: Design and Implementation of a
Concurrency Model for GAP

Reimer Behrends

TU Kaiserslautern

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

User interface

!shell – start a shell in a new thread.
!list – list active threads.
!<n> – switch to thread #n.
!break <n> – interrupt thread #n.
!QUIT – terminate GAP.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Basic multi-threading: tasks

Tasks are lightweight threads.

Function + n inputs => output

Tasks run asynchronously.

task := RunTask(func, arg_1, ..., arg_m);
WaitTask(task_1, ..., task_m);
k := WaitAnyTask(task_1, ..., task_m);
result := TaskResult(task);

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Tasks: Example I

gap> t := RunTask(SortedList, [3, 2, 1]);;
gap> TaskResult(t);
[1, 2, 3]

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Tasks: Example II

gap> tasks := List([1..20],
> x -> RunTask(Factorial, x));;
gap> List(tasks, TaskResult);

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Shared Memory

So far, we have no (or very limited) ways of sharing data between
threads.

May limit performance (copying huge objects between threads).
May limit expressiveness (some concurrent algorithms require
shared state).

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Shared Memory: Regions

Regions manage mutual exclusion and immutability.

Regions form a partition of GAP objects.

Thread-local regions.
Public region.
Read-only region.
Shared region.

Use RegionOf(obj) to learn the region of obj.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Regions: Thread safety

Only one thread can have write access to a region at any given
time∗.

While no thread has write access to a region, an arbitrary number of
threads can have read access to that region.

Regions can only read (or modify) objects in regions that they have
read (or write) access to.

This avoids race conditions.
∗: Except for the public region, which can therefore only contain
objects that are inherently thread-safe.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Regions: Enforcing access

The GAP kernel is annotated with primitives (ReadGuard(obj) and
WriteGuard(obj)) that check whether the current thread has
access to obj and raises an error otherwise.

This makes it impossible to access a region that a thread doesn’t
have access to.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Basic region management

Default: New GAP objects end up in the current thread’s
thread-local region. Immutable objects become part of the public
region.

Thread-local variables:

BindThreadLocal(name, value);

Functions are immutable and can safely be assigned to global
variables.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Quick and dirty package conversion

Convert all global variables that don’t reference functions to
thread-local variables.

Caution: Replicates state for each thread. Can waste memory.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Immutability

Two different ways of expressing immutability.

MakeImmutable(obj): move to public region (most of the
time).
MakeReadOnly(obj): move object (and subobjects) to
read-only region.
MakeReadOnlyObj(obj): move object (without subobjects)
to read-only region.

GAP: Difference between mathematical immutability (immutability
of abstract state) and immutability of concrete state.

MakeImmutable() also requires that all subobjects be immutable.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Shared objects

Sharing data:

NewRegion() or ShareObj() to create a new shared region.
MigrateObj(), AdoptObj(), IncorporateObj() to move
objects between regions.
atomic statement to gain exclusive/read-only access to one or
more regions.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Example: Immutability

BindGlobal("SmallPrimes",
MakeImmutable([2, 3, 5, 7, 11, 13]));

Useful for constants. Because this is a common construct, there is a
shortcut using the backquote character.

BindGlobal("SmallPrimes", `[2, 3, 5, 7, 11, 13]);

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Example: Shared objects

l := ShareObj([]);

SharedListAdd := function(list, value)
atomic readwrite list do

Add(list, value);
od;

end;

SharedListLength := function(list)
atomic readonly list do

return Length(list);
od;

end;

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Example: Readonly + shared objects

r := MakeReadOnly(rec(id := "foo",
cache := ShareObj([])));

We can access r.id without atomic and only need an atomic
statement for r.cache.

Useful with Objectify(): Allows method dispatch without
synchronization bottlenecks.

Note: MakeImmutable() doesn’t work because of a shared
subobject.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Advanced shared memory management

Regions are a simple, but sometimes crude and inefficient way for
ensuring a basic form of thread-safety.

For more advanced forms of shared memory management, we begin
with a (semi-)formal definition of thread-safety.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Digression: Formal thread safety

Classical model: Hoare Logic

{ Precondition }
Code
{ Postcondition }

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Example

{ x > 0 }
x := x + 1;
{ x > 1 }

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Concurrent world: Owicki-Gries

Concept of non-interference.

Q does not interfere with{Pre} P {Post} if: with one another if:

{ Pre }
P || Q
{ Post }

for all possible interleavings of P and Q∗.

Problem: combinatorial explosion for number of proof obligations.
∗: Simplified definition, see “An axiomatic proof technique for
parallel programs” by S. Owicki and D. Gries, Acta Informatica,
1976 for the actual definition.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Interference: Example

Question: does the following hold?

{ x > 0 }
x := x + 1; || x := x + 1;
{ x > 2 }

Answer: No.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Managing correctness

Separation: Give each thread its own copy of the data.

Mutual exclusion/atomicity: Only one thread can access
common data at the same time.

Read/write locks: Either one thread has exclusive access to data
or any number of threads have read-only access to data.

Immutable data: Any number of threads

Idempotent operations: Primitives who can be applied repeatedly
without changing the result.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Mutual exclusion != thread-safety.

Note: Mutual exclusion does not imply thread-safety.

Example:

shared := ShareObj([0]);

Thread code:

local t;
atomic shared do t := shared[1]; od;
t := t + 1
atomic shared do shared[1] := t; od;

Run by two threads concurrently, the end result is undefined.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Partial v. total correctness

Partial correctness only says that a program doesn’t compute
any wrong results.
Total correctness = partial correctness + program terminates.
Concurrency specific issues: deadlock, starvation.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Advanced concurrency mechanisms

Goals:

Simpler code.
Less region management boilerplate.
Accept increased memory usage to gain simplicity.
Accept reduced safety to gain simplicity/speed.

More powerful constructs.
Deadlock avoidance.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Atomic objects

Atomic objects solve the problem of having to write region
management boilerplate for mutable objects with simple semantics.

Downside: They’re unsafe. Nothing will protect you from race
conditions. The reason why region management is apparently
cumbersome at times is precisely so that one has to be explicit
about the intended behavior, minimizing inadvertent bugs.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Atomic lists

Two flavors:

Fixed size atomic lists (faster).
Resizeable atomic lists (more flexible).

gap> al := AtomicList([1,2,3]);
gap> al[4] := 4;
gap> FromAtomicList(al);
gap> RunAsyncTask(function() al[1] := 314; end);
gap> FromAtomicList(al);

gap> al := FixedAtomicList([1,2,3]);
gap> al[4] := 4;

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Atomic records

gap> r := AtomicRecord();
gap> r.x := 1;
gap> !sh
--- Switching to thread 5
[5] gap> r.z := 1;
[5] gap> !0
--- Switching to thread 0
FromAtomicRecord(r);

gap> r := AtomicRecord(rec(x := 1, y := 2, z := 3));
gap> RecNames(r);
gap> r.("x");

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Write-once semantics

Atomic objects can be given write-once semantics. Assigning to an
entry more than once is ignored.

gap> r := MakeWriteOnceAtomic(rec(x := 1, y := 2));
gap> r.z := 3; r.x := 3;
gap> FromAtomicRecord(r);

The strict version raises an error:

gap> r := MakeStrictWriteOnceAtomic(rec(x := 1, y := 2));
gap> r.z := 3; r.x := 3;
gap> FromAtomicRecord(r);

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Thread-local variables with constructors

BindThreadLocalConstructor("RNGState",
->RNGSeed(ThreadID(CurrentThread())));

Practical uses:

Random number generators.
Unique per-thread IDs.

Note: new syntax for parameterless functions.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Tasks: Cancellation

Task execution can be cancelled, but only cooperatively.

CancelTask(task) requests cancellation.
OnTaskCancellation(func) cancels task if cancellation was
requested and returns func().

Example:

gap> Read("demo/factor.g");

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Tasks: Dependencies

Tasks can execute dependent on another’s completion.

gap> task := RunTask(Sleep, 5);;
gap> task2 := ScheduleTask(task, ReturnTrue);;
gap> TaskResult(task2);

This is more efficient than WaitTask() within another task, which
needs to save the state of the current task.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Deadlocks

In order to avoid deadlocks, regions actually follow a precedence
hierarchy, and atomic nested statements need to acquire them in
descending order. Therefore, we actually have more than one
NewRegion() alternative.

NewRegion(); # top level (application code)
NewLibraryRegion(); # User libraries and GAP packages.
NewSystemRegion(); # System libraries.
NewKernelRegion(); # Kernel code.
NewInternalRegion(); # Minimal value.
NewSpecialRegion(); # Bypasses deadlock checks.

Passing multiple regions/objects to a single atomic statement is
always safe, regardless of their relative precedence.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

ShareObj() variants.

Similarly, ShareObj() has the same kinds of variants:

ShareObj()
ShareLibraryObj()
ShareSystemObj()
ShareKernelObj()
ShareInternalObj()
ShareSpecialObj()

And likewise for ShareSingleObj().

Note that starting gap with -Z turns off these checks entirely.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Low-level primitives

Channels
Semaphores
Synchronization variables
Raw threads
Disabling guards

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Channels

Channels are FIFO objects that allow threads to exchange data
directly.

They also allow for the automatic transfer between thread-local
regions without writing ShareObj()/AdoptObj() boilerplate.

Channels themselves are in the public region and can be accessed
concurrently by any number of threads.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Channel example

gap> ch := CreateChannel();
gap> SendChannel(ch, [1,2,3]);
gap> InspectChannel(ch);
gap> !sh
--- Switching to thread 5
[5] gap> ReceiveChannel(ch);
[5] [1, 2, 3]
[5] gap> RegionOf(last);
[5] <region: thread #5>

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Channels with bounded capacity

gap> ch := CreateChannel(1);
gap> SendChannel(ch, "x");
gap> SendChannel(ch, "y"); # blocks

Channels with capacity 1 are useful for certain types of handshake
semantics.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Additional channel functionality

Variant sending and receiving functions:

TryReceiveChannel(channel, default)
MultiReceiveChannel(channel, amount)
TrySendChannel(channel, value)
MultiSendChannel(channel, list)

Multiplexing:

ReceiveAnyChannel(channel_1, ..., channel_n)
ReceiveAnyChannel(channel_list)
ReceiveAnyChannelWithIndex(...)

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Semaphores

gap> sem := CreateSemaphore(0);
gap> WaitSemaphore(sem);
gap> !sh
--- Switching to thread 5
[5] gap> SignalSemaphore(sem);
[5] gap> !0
--- Switching to thread 0
gap>

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Semaphore applications

Idle wait on a condition (usually in conjunction with a region).
Simulate low-level locks.

CreateSemaphore(1) to create a pseudo-lock.
WaitSemaphore() to lock it.
SignalSemaphore() to unlock it.

Limit access to a resource with bounded capacity.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Synchronization variables

Synchronization variables are containers with write-once, blocking
read semantics. Useful for data handshakes.

gap> var := CreateSyncVar();
gap> SyncIsBound(var);
false
gap> SyncWrite(var, [1,2,3]);
gap> SyncIsBound(var);
true
gap> SyncRead(var);
[1, 2, 3]

Note: the value will not be migrated. Use shared, read-only,
immutable, or atomic objects. This is because the value may be
read by multiple threads.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Raw threads

Starting a thread is expensive. You should only launch a new thread
if you expect that it can do a significant amount of work.

gap> th := CreateThread(function()
> Display("Ping!");
> end);
gap> ThreadID(th);
gap> WaitThread(th);

Threads can be controlled by KillThread(), PauseThread(), and
ResumeThread().

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

Additional features

Efficient serialization of GAP objects.
Built-in hash tables/sets based on object identity.
MPI bindings.
ZeroMQ bindings.
And more.

See documentation for details.

Reimer Behrends HPC-GAP: Design and Implementation of a Concurrency Model for GAP

