
CategoriesForHomalg - category theory based
programming

Sebastian Gutsche and Sebastian Posur

TU Kaiserslautern / RWTH Aachen

Aachen, August 27, 2014

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 1 / 26

Motivation

Motivation

Given two categories A and B, one can construct lots of new
categories

, e.g., ChainComplexes(A), A/B, or Hom(A,B).
What is the advantage of having such constructions in GAP?

R −mod ChainComplexes(R −mod)
(extension of functors, e.g., −⊗R M)

k [x0, . . . , xn]− grmod −→ k [x0,...,xn]−grmod〈
finite dimensional modules

〉 ∼= Coh(Pn
k)

(sheafification functor)

We can derive useful new data structures and methods out of old ones
in a compatible way.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 2 / 26

Motivation

Motivation

Given two categories A and B, one can construct lots of new
categories, e.g., ChainComplexes(A), A/B, or Hom(A,B).

What is the advantage of having such constructions in GAP?

R −mod ChainComplexes(R −mod)
(extension of functors, e.g., −⊗R M)

k [x0, . . . , xn]− grmod −→ k [x0,...,xn]−grmod〈
finite dimensional modules

〉 ∼= Coh(Pn
k)

(sheafification functor)

We can derive useful new data structures and methods out of old ones
in a compatible way.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 2 / 26

Motivation

Motivation

Given two categories A and B, one can construct lots of new
categories, e.g., ChainComplexes(A), A/B, or Hom(A,B).
What is the advantage of having such constructions in GAP?

R −mod ChainComplexes(R −mod)
(extension of functors, e.g., −⊗R M)

k [x0, . . . , xn]− grmod −→ k [x0,...,xn]−grmod〈
finite dimensional modules

〉 ∼= Coh(Pn
k)

(sheafification functor)

We can derive useful new data structures and methods out of old ones
in a compatible way.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 2 / 26

Motivation

Motivation

Given two categories A and B, one can construct lots of new
categories, e.g., ChainComplexes(A), A/B, or Hom(A,B).
What is the advantage of having such constructions in GAP?

R −mod ChainComplexes(R −mod)

(extension of functors, e.g., −⊗R M)

k [x0, . . . , xn]− grmod −→ k [x0,...,xn]−grmod〈
finite dimensional modules

〉 ∼= Coh(Pn
k)

(sheafification functor)

We can derive useful new data structures and methods out of old ones
in a compatible way.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 2 / 26

Motivation

Motivation

Given two categories A and B, one can construct lots of new
categories, e.g., ChainComplexes(A), A/B, or Hom(A,B).
What is the advantage of having such constructions in GAP?

R −mod ChainComplexes(R −mod)
(extension of functors, e.g., −⊗R M)

k [x0, . . . , xn]− grmod −→ k [x0,...,xn]−grmod〈
finite dimensional modules

〉 ∼= Coh(Pn
k)

(sheafification functor)

We can derive useful new data structures and methods out of old ones
in a compatible way.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 2 / 26

Motivation

Motivation

Given two categories A and B, one can construct lots of new
categories, e.g., ChainComplexes(A), A/B, or Hom(A,B).
What is the advantage of having such constructions in GAP?

R −mod ChainComplexes(R −mod)
(extension of functors, e.g., −⊗R M)

k [x0, . . . , xn]− grmod −→ k [x0,...,xn]−grmod〈
finite dimensional modules

〉

∼= Coh(Pn
k)

(sheafification functor)

We can derive useful new data structures and methods out of old ones
in a compatible way.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 2 / 26

Motivation

Motivation

Given two categories A and B, one can construct lots of new
categories, e.g., ChainComplexes(A), A/B, or Hom(A,B).
What is the advantage of having such constructions in GAP?

R −mod ChainComplexes(R −mod)
(extension of functors, e.g., −⊗R M)

k [x0, . . . , xn]− grmod −→ k [x0,...,xn]−grmod〈
finite dimensional modules

〉 ∼= Coh(Pn
k)

(sheafification functor)

We can derive useful new data structures and methods out of old ones
in a compatible way.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 2 / 26

Motivation

Motivation

Given two categories A and B, one can construct lots of new
categories, e.g., ChainComplexes(A), A/B, or Hom(A,B).
What is the advantage of having such constructions in GAP?

R −mod ChainComplexes(R −mod)
(extension of functors, e.g., −⊗R M)

k [x0, . . . , xn]− grmod −→ k [x0,...,xn]−grmod〈
finite dimensional modules

〉 ∼= Coh(Pn
k)

(sheafification functor)

We can derive useful new data structures and methods out of old ones
in a compatible way.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 2 / 26

Motivation

Motivation

Given two categories A and B, one can construct lots of new
categories, e.g., ChainComplexes(A), A/B, or Hom(A,B).
What is the advantage of having such constructions in GAP?

R −mod ChainComplexes(R −mod)
(extension of functors, e.g., −⊗R M)

k [x0, . . . , xn]− grmod −→ k [x0,...,xn]−grmod〈
finite dimensional modules

〉 ∼= Coh(Pn
k)

(sheafification functor)

We can derive useful new data structures and methods out of old ones

in a compatible way.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 2 / 26

Motivation

Motivation

Given two categories A and B, one can construct lots of new
categories, e.g., ChainComplexes(A), A/B, or Hom(A,B).
What is the advantage of having such constructions in GAP?

R −mod ChainComplexes(R −mod)
(extension of functors, e.g., −⊗R M)

k [x0, . . . , xn]− grmod −→ k [x0,...,xn]−grmod〈
finite dimensional modules

〉 ∼= Coh(Pn
k)

(sheafification functor)

We can derive useful new data structures and methods out of old ones
in a compatible way.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 2 / 26

Motivation

Motivation

Given two categories A and B, one can construct lots of new
categories, e.g., ChainComplexes(A), A/B, or Hom(A,B).
What is the advantage of having such constructions in GAP?

R −mod ChainComplexes(R −mod)
(extension of functors, e.g., −⊗R M)

k [x0, . . . , xn]− grmod −→ k [x0,...,xn]−grmod〈
finite dimensional modules

〉 ∼= Coh(Pn
k)

(sheafification functor)

We can derive useful new data structures and methods out of old ones
in a compatible (functorial) way.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 2 / 26

Motivation

CategoriesForHomalg

CategoriesForHomalg is a GAP package providing

1 data structures for
categories,
functors,
natural transformations,
opposite categories,
chain complexes,
(Serre) quotient categories,
. . .

2 methods for
pullbacks,
pushouts,
connecting homomorphisms,
generalized morphisms,
spectral sequences,
. . .

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 3 / 26

Motivation

CategoriesForHomalg

CategoriesForHomalg is a GAP package providing

1 data structures for
categories,
functors,
natural transformations,
opposite categories,
chain complexes,
(Serre) quotient categories,
. . .

2 methods for
pullbacks,
pushouts,
connecting homomorphisms,
generalized morphisms,
spectral sequences,
. . .

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 3 / 26

Motivation

CategoriesForHomalg

CategoriesForHomalg is a GAP package providing

1 data structures for

categories,
functors,
natural transformations,
opposite categories,
chain complexes,
(Serre) quotient categories,
. . .

2 methods for
pullbacks,
pushouts,
connecting homomorphisms,
generalized morphisms,
spectral sequences,
. . .

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 3 / 26

Motivation

CategoriesForHomalg

CategoriesForHomalg is a GAP package providing

1 data structures for
categories,

functors,
natural transformations,
opposite categories,
chain complexes,
(Serre) quotient categories,
. . .

2 methods for
pullbacks,
pushouts,
connecting homomorphisms,
generalized morphisms,
spectral sequences,
. . .

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 3 / 26

Motivation

CategoriesForHomalg

CategoriesForHomalg is a GAP package providing

1 data structures for
categories,
functors,

natural transformations,
opposite categories,
chain complexes,
(Serre) quotient categories,
. . .

2 methods for
pullbacks,
pushouts,
connecting homomorphisms,
generalized morphisms,
spectral sequences,
. . .

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 3 / 26

Motivation

CategoriesForHomalg

CategoriesForHomalg is a GAP package providing

1 data structures for
categories,
functors,
natural transformations,

opposite categories,
chain complexes,
(Serre) quotient categories,
. . .

2 methods for
pullbacks,
pushouts,
connecting homomorphisms,
generalized morphisms,
spectral sequences,
. . .

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 3 / 26

Motivation

CategoriesForHomalg

CategoriesForHomalg is a GAP package providing

1 data structures for
categories,
functors,
natural transformations,
opposite categories,

chain complexes,
(Serre) quotient categories,
. . .

2 methods for
pullbacks,
pushouts,
connecting homomorphisms,
generalized morphisms,
spectral sequences,
. . .

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 3 / 26

Motivation

CategoriesForHomalg

CategoriesForHomalg is a GAP package providing

1 data structures for
categories,
functors,
natural transformations,
opposite categories,
chain complexes,

(Serre) quotient categories,
. . .

2 methods for
pullbacks,
pushouts,
connecting homomorphisms,
generalized morphisms,
spectral sequences,
. . .

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 3 / 26

Motivation

CategoriesForHomalg

CategoriesForHomalg is a GAP package providing

1 data structures for
categories,
functors,
natural transformations,
opposite categories,
chain complexes,
(Serre) quotient categories,

. . .
2 methods for

pullbacks,
pushouts,
connecting homomorphisms,
generalized morphisms,
spectral sequences,
. . .

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 3 / 26

Motivation

CategoriesForHomalg

CategoriesForHomalg is a GAP package providing

1 data structures for
categories,
functors,
natural transformations,
opposite categories,
chain complexes,
(Serre) quotient categories,
. . .

2 methods for
pullbacks,
pushouts,
connecting homomorphisms,
generalized morphisms,
spectral sequences,
. . .

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 3 / 26

Motivation

CategoriesForHomalg

CategoriesForHomalg is a GAP package providing

1 data structures for
categories,
functors,
natural transformations,
opposite categories,
chain complexes,
(Serre) quotient categories,
. . .

2 methods for

pullbacks,
pushouts,
connecting homomorphisms,
generalized morphisms,
spectral sequences,
. . .

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 3 / 26

Motivation

CategoriesForHomalg

CategoriesForHomalg is a GAP package providing

1 data structures for
categories,
functors,
natural transformations,
opposite categories,
chain complexes,
(Serre) quotient categories,
. . .

2 methods for
pullbacks,

pushouts,
connecting homomorphisms,
generalized morphisms,
spectral sequences,
. . .

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 3 / 26

Motivation

CategoriesForHomalg

CategoriesForHomalg is a GAP package providing

1 data structures for
categories,
functors,
natural transformations,
opposite categories,
chain complexes,
(Serre) quotient categories,
. . .

2 methods for
pullbacks,
pushouts,

connecting homomorphisms,
generalized morphisms,
spectral sequences,
. . .

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 3 / 26

Motivation

CategoriesForHomalg

CategoriesForHomalg is a GAP package providing

1 data structures for
categories,
functors,
natural transformations,
opposite categories,
chain complexes,
(Serre) quotient categories,
. . .

2 methods for
pullbacks,
pushouts,
connecting homomorphisms,

generalized morphisms,
spectral sequences,
. . .

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 3 / 26

Motivation

CategoriesForHomalg

CategoriesForHomalg is a GAP package providing

1 data structures for
categories,
functors,
natural transformations,
opposite categories,
chain complexes,
(Serre) quotient categories,
. . .

2 methods for
pullbacks,
pushouts,
connecting homomorphisms,
generalized morphisms,

spectral sequences,
. . .

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 3 / 26

Motivation

CategoriesForHomalg

CategoriesForHomalg is a GAP package providing

1 data structures for
categories,
functors,
natural transformations,
opposite categories,
chain complexes,
(Serre) quotient categories,
. . .

2 methods for
pullbacks,
pushouts,
connecting homomorphisms,
generalized morphisms,
spectral sequences,

. . .

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 3 / 26

Motivation

CategoriesForHomalg

CategoriesForHomalg is a GAP package providing

1 data structures for
categories,
functors,
natural transformations,
opposite categories,
chain complexes,
(Serre) quotient categories,
. . .

2 methods for
pullbacks,
pushouts,
connecting homomorphisms,
generalized morphisms,
spectral sequences,
. . .

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 3 / 26

A simple example

A simple example: QVectorSpaces

QVectorSpaces:
The category of finite dimensional vector spaces over Q.

1 Create a HomalgCategory:

QVectorSpaces := CreateHomalgCategory("QVectorSpaces");

2 Write constructors for objects and morphisms:

Data structure for objects: N0 (wrapped integers)
Data structure for morphisms: Matrices with entries in Q

...
ObjectifyWithAttributes(morphism, TypeOfQVectorSpaceMorphisms,
Source, source,
Range, range);

Add(QVectorSpaces, morphism);
...

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 4 / 26

A simple example

A simple example: QVectorSpaces

QVectorSpaces:
The category of finite dimensional vector spaces over Q.

1 Create a HomalgCategory:

QVectorSpaces := CreateHomalgCategory("QVectorSpaces");

2 Write constructors for objects and morphisms:

Data structure for objects: N0 (wrapped integers)
Data structure for morphisms: Matrices with entries in Q

...
ObjectifyWithAttributes(morphism, TypeOfQVectorSpaceMorphisms,
Source, source,
Range, range);

Add(QVectorSpaces, morphism);
...

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 4 / 26

A simple example

A simple example: QVectorSpaces

QVectorSpaces:
The category of finite dimensional vector spaces over Q.

1 Create a HomalgCategory:

QVectorSpaces := CreateHomalgCategory("QVectorSpaces");

2 Write constructors for objects and morphisms:

Data structure for objects: N0 (wrapped integers)
Data structure for morphisms: Matrices with entries in Q

...
ObjectifyWithAttributes(morphism, TypeOfQVectorSpaceMorphisms,
Source, source,
Range, range);

Add(QVectorSpaces, morphism);
...

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 4 / 26

A simple example

A simple example: QVectorSpaces

QVectorSpaces:
The category of finite dimensional vector spaces over Q.

1 Create a HomalgCategory:

QVectorSpaces := CreateHomalgCategory("QVectorSpaces");

2 Write constructors for objects and morphisms:

Data structure for objects: N0

(wrapped integers)
Data structure for morphisms: Matrices with entries in Q

...
ObjectifyWithAttributes(morphism, TypeOfQVectorSpaceMorphisms,
Source, source,
Range, range);

Add(QVectorSpaces, morphism);
...

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 4 / 26

A simple example

A simple example: QVectorSpaces

QVectorSpaces:
The category of finite dimensional vector spaces over Q.

1 Create a HomalgCategory:

QVectorSpaces := CreateHomalgCategory("QVectorSpaces");

2 Write constructors for objects and morphisms:

Data structure for objects: N0 (wrapped integers)

Data structure for morphisms: Matrices with entries in Q

...
ObjectifyWithAttributes(morphism, TypeOfQVectorSpaceMorphisms,
Source, source,
Range, range);

Add(QVectorSpaces, morphism);
...

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 4 / 26

A simple example

A simple example: QVectorSpaces

QVectorSpaces:
The category of finite dimensional vector spaces over Q.

1 Create a HomalgCategory:

QVectorSpaces := CreateHomalgCategory("QVectorSpaces");

2 Write constructors for objects and morphisms:

Data structure for objects: N0 (wrapped integers)
Data structure for morphisms: Matrices with entries in Q

...
ObjectifyWithAttributes(morphism, TypeOfQVectorSpaceMorphisms,
Source, source,
Range, range);

Add(QVectorSpaces, morphism);
...

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 4 / 26

A simple example

A simple example: QVectorSpaces

QVectorSpaces:
The category of finite dimensional vector spaces over Q.

1 Create a HomalgCategory:

QVectorSpaces := CreateHomalgCategory("QVectorSpaces");

2 Write constructors for objects and morphisms:

Data structure for objects: N0 (wrapped integers)
Data structure for morphisms: Matrices with entries in Q

...
ObjectifyWithAttributes(morphism, TypeOfQVectorSpaceMorphisms,
Source, source,
Range, range);

Add(QVectorSpaces, morphism);
...

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 4 / 26

A simple example

A simple example: QVectorSpaces

3 Add some basic algorithms to QVectorSpaces

, for example:
AddKernel(QVectorSpaces,

function(morphism)
local matrix;

matrix := morphism!.underlying_matrix;

return
QVectorSpace(NrRows(matrix) - RankOfMatrix(matrix));

end);

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 5 / 26

A simple example

A simple example: QVectorSpaces

3 Add some basic algorithms to QVectorSpaces, for example:

AddKernel(QVectorSpaces,

function(morphism)
local matrix;

matrix := morphism!.underlying_matrix;

return
QVectorSpace(NrRows(matrix) - RankOfMatrix(matrix));

end);

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 5 / 26

A simple example

A simple example: QVectorSpaces

3 Add some basic algorithms to QVectorSpaces, for example:
AddKernel(QVectorSpaces,

function(morphism)
local matrix;

matrix := morphism!.underlying_matrix;

return
QVectorSpace(NrRows(matrix) - RankOfMatrix(matrix));

end);

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 5 / 26

A simple example

A simple example: QVectorSpaces

Actually, there is more to say about the kernel:

To handle the kernel of
ϕ algorithmically . . .

. . . one has to construct the object kerϕ,
its embedding into the object M,

and for every test object T
a morphism given by kerϕ’s universal property.

M N

kerϕ

T

ϕ

0

κ

τ

0

τ/κ

Thus a proper implementation of the kernel needs three algorithms.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 6 / 26

A simple example

A simple example: QVectorSpaces

Actually, there is more to say about the kernel: To handle the kernel of
ϕ algorithmically . . .

. . . one has to construct the object kerϕ,
its embedding into the object M,

and for every test object T
a morphism given by kerϕ’s universal property.

M N

kerϕ

T

ϕ

0

κ

τ

0

τ/κ

Thus a proper implementation of the kernel needs three algorithms.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 6 / 26

A simple example

A simple example: QVectorSpaces

Actually, there is more to say about the kernel: To handle the kernel of
ϕ algorithmically . . .

. . . one has to construct the object kerϕ,

its embedding into the object M,
and for every test object T

a morphism given by kerϕ’s universal property.

M N

kerϕ

T

ϕ

0

κ

τ

0

τ/κ

Thus a proper implementation of the kernel needs three algorithms.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 6 / 26

A simple example

A simple example: QVectorSpaces

Actually, there is more to say about the kernel: To handle the kernel of
ϕ algorithmically . . .

. . . one has to construct the object kerϕ,
its embedding into the object M,

and for every test object T
a morphism given by kerϕ’s universal property.

M N

kerϕ

T

ϕ

0

κ

τ

0

τ/κ

Thus a proper implementation of the kernel needs three algorithms.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 6 / 26

A simple example

A simple example: QVectorSpaces

Actually, there is more to say about the kernel: To handle the kernel of
ϕ algorithmically . . .

. . . one has to construct the object kerϕ,
its embedding into the object M,

and for every test object T

a morphism given by kerϕ’s universal property.

M N

kerϕ

T

ϕ

0

κ

τ

0

τ/κ

Thus a proper implementation of the kernel needs three algorithms.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 6 / 26

A simple example

A simple example: QVectorSpaces

Actually, there is more to say about the kernel: To handle the kernel of
ϕ algorithmically . . .

. . . one has to construct the object kerϕ,
its embedding into the object M,

and for every test object T
a morphism given by kerϕ’s universal property.

M N

kerϕ

T

ϕ

0

κ

τ

0

τ/κ

Thus a proper implementation of the kernel needs three algorithms.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 6 / 26

A simple example

A simple example: QVectorSpaces

Actually, there is more to say about the kernel: To handle the kernel of
ϕ algorithmically . . .

. . . one has to construct the object kerϕ,
its embedding into the object M,

and for every test object T
a morphism given by kerϕ’s universal property.

M N

kerϕ

T

ϕ

0

κ

τ

0

τ/κ

Thus a proper implementation of the kernel needs three algorithms.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 6 / 26

A simple example

A simple example: QVectorSpaces

After having implemented these basic algorithms,
CategoriesForHomalg provides derived algorithms.

Example: Factorization of a morphism into an epi and a mono.

M N

ker(ϕ)

coker(ι)

ϕ

ι

iota := KernelEmb(phi);

epimorphism := CokernelProj(iota);

monomorphism := CokernelColift(iota, phi);

return [epimorphism, monomorphism];

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 7 / 26

A simple example

A simple example: QVectorSpaces

After having implemented these basic algorithms,
CategoriesForHomalg provides derived algorithms.
Example: Factorization of a morphism into an epi and a mono.

M N

ker(ϕ)

coker(ι)

ϕ

ι

iota := KernelEmb(phi);

epimorphism := CokernelProj(iota);

monomorphism := CokernelColift(iota, phi);

return [epimorphism, monomorphism];

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 7 / 26

A simple example

A simple example: QVectorSpaces

After having implemented these basic algorithms,
CategoriesForHomalg provides derived algorithms.
Example: Factorization of a morphism into an epi and a mono.

M Nker(ϕ)

coker(ι)

ϕι

iota := KernelEmb(phi);

epimorphism := CokernelProj(iota);

monomorphism := CokernelColift(iota, phi);

return [epimorphism, monomorphism];

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 7 / 26

A simple example

A simple example: QVectorSpaces

After having implemented these basic algorithms,
CategoriesForHomalg provides derived algorithms.
Example: Factorization of a morphism into an epi and a mono.

M Nker(ϕ)

coker(ι)

ϕι

iota := KernelEmb(phi);

epimorphism := CokernelProj(iota);

monomorphism := CokernelColift(iota, phi);

return [epimorphism, monomorphism];

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 7 / 26

A simple example

A simple example: QVectorSpaces

After having implemented these basic algorithms,
CategoriesForHomalg provides derived algorithms.
Example: Factorization of a morphism into an epi and a mono.

M Nker(ϕ)

coker(ι)

ϕι

iota := KernelEmb(phi);

epimorphism := CokernelProj(iota);

monomorphism := CokernelColift(iota, phi);

return [epimorphism, monomorphism];

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 7 / 26

A simple example

A simple example: QVectorSpaces

After having implemented these basic algorithms,
CategoriesForHomalg provides derived algorithms.
Example: Factorization of a morphism into an epi and a mono.

M Nker(ϕ)

coker(ι)

ϕι

iota := KernelEmb(phi);

epimorphism := CokernelProj(iota);

monomorphism := CokernelColift(iota, phi);

return [epimorphism, monomorphism];

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 7 / 26

A simple example

A simple example: QVectorSpaces

After having implemented these basic algorithms,
CategoriesForHomalg provides derived algorithms.

Another example: Pullback.

M

N B

M ⊕ N

ker(ϕ)

ν

µ

πM

πN
δ

1 Compute M ⊕ N and projection maps.
2 Compute δ := µ ◦ πM − ν ◦ πN .
3 Compute the kernel embedding of δ.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 8 / 26

A simple example

A simple example: QVectorSpaces

After having implemented these basic algorithms,
CategoriesForHomalg provides derived algorithms.
Another example: Pullback.

M

N B

M ⊕ N

ker(ϕ)

ν

µ

πM

πN
δ

1 Compute M ⊕ N and projection maps.
2 Compute δ := µ ◦ πM − ν ◦ πN .
3 Compute the kernel embedding of δ.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 8 / 26

A simple example

A simple example: QVectorSpaces

After having implemented these basic algorithms,
CategoriesForHomalg provides derived algorithms.
Another example: Pullback.

M

N B

M ⊕ N

ker(ϕ)

ν

µ

πM

πN

δ

1 Compute M ⊕ N and projection maps.

2 Compute δ := µ ◦ πM − ν ◦ πN .
3 Compute the kernel embedding of δ.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 8 / 26

A simple example

A simple example: QVectorSpaces

After having implemented these basic algorithms,
CategoriesForHomalg provides derived algorithms.
Another example: Pullback.

M

N B

M ⊕ N

ker(ϕ)

ν

µ

πM

πN
δ

1 Compute M ⊕ N and projection maps.
2 Compute δ := µ ◦ πM − ν ◦ πN .

3 Compute the kernel embedding of δ.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 8 / 26

A simple example

A simple example: QVectorSpaces

After having implemented these basic algorithms,
CategoriesForHomalg provides derived algorithms.
Another example: Pullback.

M

N B

M ⊕ N

ker(ϕ)

ν

µ

πM

πN
δ

1 Compute M ⊕ N and projection maps.
2 Compute δ := µ ◦ πM − ν ◦ πN .
3 Compute the kernel embedding of δ.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 8 / 26

A simple example

A simple example: QVectorSpaces

After having implemented these basic algorithms,
CategoriesForHomalg provides derived algorithms.
Another example: Pullback.

M

N B

M ⊕ N

ker(ϕ)

ν

µ

πM

πN
δ

1 Compute M ⊕ N and projection maps.
2 Compute δ := µ ◦ πM − ν ◦ πN .
3 Compute the kernel embedding of δ.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 8 / 26

Category theory based programming

Advantages of categorial programming

Deduce higher algorithms from basic algorithms.
Generate new data structures from old ones with low effort.
Create a “type-safe” enviroment with objects and morphisms living
in exactly one category and with functors as converters.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 9 / 26

Category theory based programming

Advantages of categorial programming

Deduce higher algorithms from basic algorithms.

Generate new data structures from old ones with low effort.
Create a “type-safe” enviroment with objects and morphisms living
in exactly one category and with functors as converters.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 9 / 26

Category theory based programming

Advantages of categorial programming

Deduce higher algorithms from basic algorithms.
Generate new data structures from old ones with low effort.

Create a “type-safe” enviroment with objects and morphisms living
in exactly one category and with functors as converters.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 9 / 26

Category theory based programming

Advantages of categorial programming

Deduce higher algorithms from basic algorithms.
Generate new data structures from old ones with low effort.
Create a “type-safe” enviroment with objects and morphisms living
in exactly one category

and with functors as converters.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 9 / 26

Category theory based programming

Advantages of categorial programming

Deduce higher algorithms from basic algorithms.
Generate new data structures from old ones with low effort.
Create a “type-safe” enviroment with objects and morphisms living
in exactly one category and with functors as converters.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 9 / 26

Category theory based programming

Who profits?

Programmers who wants to embed their code in a categorial
setup.
Mathematicians/ Physicists experimenting with complex
mathematical objects.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 10 / 26

Category theory based programming

Who profits?

Programmers who wants to embed their code in a categorial
setup.

Mathematicians/ Physicists experimenting with complex
mathematical objects.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 10 / 26

Category theory based programming

Who profits?

Programmers who wants to embed their code in a categorial
setup.
Mathematicians/ Physicists experimenting with complex
mathematical objects.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 10 / 26

More advanced concepts implemented

Functors: modelling relations between data types

Structure of a functor
A functor is modeled as a morphism in the category of categories.

They can be composed!
Each functor can contain functions to be applied to objects,
morphisms, etc.

gap> AddObjectFunction(transpose,
> obj -> Opposite(obj));;
gap> AddMorphismFunction(transpose,
> func(source_new, mor, range_new)
> return Transpose(Opposite(mor));
> end);;
gap> ApplyFunctor(transpose, Opposite(tau));
<A morphism in the category QVectorSpaces>

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 11 / 26

More advanced concepts implemented

Functors: modelling relations between data types

Structure of a functor
A functor is modeled as a morphism in the category of categories.
They can be composed!

Each functor can contain functions to be applied to objects,
morphisms, etc.

gap> AddObjectFunction(transpose,
> obj -> Opposite(obj));;
gap> AddMorphismFunction(transpose,
> func(source_new, mor, range_new)
> return Transpose(Opposite(mor));
> end);;
gap> ApplyFunctor(transpose, Opposite(tau));
<A morphism in the category QVectorSpaces>

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 11 / 26

More advanced concepts implemented

Functors: modelling relations between data types

Structure of a functor
A functor is modeled as a morphism in the category of categories.
They can be composed!
Each functor can contain functions to be applied to objects,
morphisms, etc.

gap> AddObjectFunction(transpose,
> obj -> Opposite(obj));;
gap> AddMorphismFunction(transpose,
> func(source_new, mor, range_new)
> return Transpose(Opposite(mor));
> end);;
gap> ApplyFunctor(transpose, Opposite(tau));
<A morphism in the category QVectorSpaces>

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 11 / 26

More advanced concepts implemented

Functors: modelling relations between data types

Structure of a functor
A functor is modeled as a morphism in the category of categories.
They can be composed!
Each functor can contain functions to be applied to objects,
morphisms, etc.

gap> AddObjectFunction(transpose,
> obj -> Opposite(obj));;
gap> AddMorphismFunction(transpose,
> func(source_new, mor, range_new)
> return Transpose(Opposite(mor));
> end);;
gap> ApplyFunctor(transpose, Opposite(tau));
<A morphism in the category QVectorSpaces>

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 11 / 26

More advanced concepts implemented

Why are functors important?

Functors model relations and translations between categories.

Data structures can be completely modeled by functors.
Soon: One data structure for complexes as functors from Integers
to a category

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 12 / 26

More advanced concepts implemented

Why are functors important?

Functors model relations and translations between categories.
Data structures can be completely modeled by functors.

Soon: One data structure for complexes as functors from Integers
to a category

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 12 / 26

More advanced concepts implemented

Why are functors important?

Functors model relations and translations between categories.
Data structures can be completely modeled by functors.
Soon: One data structure for complexes as functors from Integers
to a category

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 12 / 26

More advanced concepts implemented

About the implementation of functors

Crucial for functors: Caching

If a functor F is applied to two morphisms A→ B and B → C, the
resulting morphisms F (A)→ F (B) and F (B)→ F (C) should be
composable:

We need the two F (B) to be identical.
Therefore functors store their computed values.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 13 / 26

More advanced concepts implemented

About the implementation of functors

Crucial for functors: Caching

If a functor F is applied to two morphisms A→ B and B → C, the
resulting morphisms F (A)→ F (B) and F (B)→ F (C) should be
composable:

We need the two F (B) to be identical.

Therefore functors store their computed values.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 13 / 26

More advanced concepts implemented

About the implementation of functors

Crucial for functors: Caching

If a functor F is applied to two morphisms A→ B and B → C, the
resulting morphisms F (A)→ F (B) and F (B)→ F (C) should be
composable:

We need the two F (B) to be identical.
Therefore functors store their computed values.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 13 / 26

More advanced concepts implemented

Data structures for localization

Generalized morphism
Every category A defined in CategoriesForHomalg has an
associated Generalized morphism category G (A).

In this category
every monomorphism or epimorphism of A is split.

Diagram chases become possible

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 14 / 26

More advanced concepts implemented

Data structures for localization

Generalized morphism
Every category A defined in CategoriesForHomalg has an
associated Generalized morphism category G (A). In this category
every monomorphism or epimorphism of A is split.

Diagram chases become possible

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 14 / 26

More advanced concepts implemented

Data structures for localization

Generalized morphism
Every category A defined in CategoriesForHomalg has an
associated Generalized morphism category G (A). In this category
every monomorphism or epimorphism of A is split.

Diagram chases become possible

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 14 / 26

More advanced concepts implemented

*Example: Snake lemma

Find the snake using generalized morphisms.

ker

A′ B′ C′ 0

0 A B C

coker

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 15 / 26

More advanced concepts implemented

*Example: Snake lemma

Find the snake using generalized morphisms.

ker

A′ B′ C′ 0

0 A B C

coker

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 15 / 26

More advanced concepts implemented

*Example: Snake lemma

Find the snake using generalized morphisms.

ker

A′ B′ C′ 0

0 A B C

coker

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 15 / 26

More advanced concepts implemented

*Example: Snake lemma

Find the snake using generalized morphisms.

ker

A′ B′ C′ 0

0 A B C

coker

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 15 / 26

More advanced concepts implemented

*Example: Snake lemma

Find the snake using generalized morphisms.

ker

A′ B′ C′ 0

0 A B C

coker

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 15 / 26

More advanced concepts implemented

*Example: Snake lemma

Find the snake using generalized morphisms.

ker

A′ B′ C′ 0

0 A B C

coker

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 15 / 26

More advanced concepts implemented

*Example: Snake lemma

Find the snake using generalized morphisms.

ker

A′ B′ C′ 0

0 A B C

coker

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 15 / 26

ToolsForHomalg - Advanced technical features

ToolsForHomalg - Advanced technical features

ToolsForHomalg
Advanced technical features

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 16 / 26

ToolsForHomalg - Advanced technical features

Data structure for caches

ToolsForHomalg offers convenient caches.

Caching in ToolsForHomalg

Caches are GAP objects which take a list of keys and possibly
return a stored GAP object.
All objects are stored in weak pointer lists.

gap> cache := CachingObject(2);
<A cache with keylength 2, 0 hits, 0 misses>
gap> SetCacheValue(cache, [S, T], U);;
gap> GetCacheValue(cache, [S, T]);
U
gap> cache;
<A cache with keylength 2, 1 hits, 0 misses>

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 17 / 26

ToolsForHomalg - Advanced technical features

Data structure for caches

ToolsForHomalg offers convenient caches.

Caching in ToolsForHomalg

Caches are GAP objects which take a list of keys and possibly
return a stored GAP object.

All objects are stored in weak pointer lists.

gap> cache := CachingObject(2);
<A cache with keylength 2, 0 hits, 0 misses>
gap> SetCacheValue(cache, [S, T], U);;
gap> GetCacheValue(cache, [S, T]);
U
gap> cache;
<A cache with keylength 2, 1 hits, 0 misses>

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 17 / 26

ToolsForHomalg - Advanced technical features

Data structure for caches

ToolsForHomalg offers convenient caches.

Caching in ToolsForHomalg

Caches are GAP objects which take a list of keys and possibly
return a stored GAP object.
All objects are stored in weak pointer lists.

gap> cache := CachingObject(2);
<A cache with keylength 2, 0 hits, 0 misses>
gap> SetCacheValue(cache, [S, T], U);;
gap> GetCacheValue(cache, [S, T]);
U
gap> cache;
<A cache with keylength 2, 1 hits, 0 misses>

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 17 / 26

ToolsForHomalg - Advanced technical features

Data structure for caches

ToolsForHomalg offers convenient caches.

Caching in ToolsForHomalg

Caches are GAP objects which take a list of keys and possibly
return a stored GAP object.
All objects are stored in weak pointer lists.

gap> cache := CachingObject(2);
<A cache with keylength 2, 0 hits, 0 misses>
gap> SetCacheValue(cache, [S, T], U);;
gap> GetCacheValue(cache, [S, T]);
U
gap> cache;
<A cache with keylength 2, 1 hits, 0 misses>

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 17 / 26

ToolsForHomalg - Advanced technical features

Convenience for caches: InstallMethodWithCache

Install a method with cache
Use InstallMethodWithCache instead of InstallMethod to
install a method which stores its results.

InstallMethodWithCache(DirectProductFunctor,
[IsHomalgCategory, IsInt],

function(category, number_of_arguments)
local direct_product_functor;

...
return direct_product_functor;

end);

At the second call of this function with identical input, the stored value
is returned.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 18 / 26

ToolsForHomalg - Advanced technical features

Convenience for caches: InstallMethodWithCache

Install a method with cache
Use InstallMethodWithCache instead of InstallMethod to
install a method which stores its results.
InstallMethodWithCache(DirectProductFunctor,

[IsHomalgCategory, IsInt],

function(category, number_of_arguments)
local direct_product_functor;
...

return direct_product_functor;
end);

At the second call of this function with identical input, the stored value
is returned.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 18 / 26

ToolsForHomalg - Advanced technical features

Convenience for caches: InstallMethodWithCache

Install a method with cache
Use InstallMethodWithCache instead of InstallMethod to
install a method which stores its results.
InstallMethodWithCache(DirectProductFunctor,

[IsHomalgCategory, IsInt],

function(category, number_of_arguments)
local direct_product_functor;
...

return direct_product_functor;
end);

At the second call of this function with identical input, the stored value
is returned.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 18 / 26

ToolsForHomalg - Advanced technical features

Convenience for caches:
InstallMethodWithCacheFromObject

Install a method with cache extracted from argument
InstallMethodWithCacheFromObject works like
InstallMethodWithCache, but extracts the cache from one of
its arguments.

One needs to implement a function CachingObject which can
be applied to the argument.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 19 / 26

ToolsForHomalg - Advanced technical features

Convenience for caches:
InstallMethodWithCacheFromObject

Install a method with cache extracted from argument
InstallMethodWithCacheFromObject works like
InstallMethodWithCache, but extracts the cache from one of
its arguments.
One needs to implement a function CachingObject which can
be applied to the argument.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 19 / 26

ToolsForHomalg - Advanced technical features

Convenience for caches:
InstallMethodWithCacheFromObject

*Install the API function

InstallMethod(CachingObject,
[IsHomalgCategory, IsString, IsInt],

function(category, name, number)
local cache;

if IsBound(category!.caches.(name)) then
return category!.caches.(name);

fi;

cache := CachingObject(number);
category!.caches.(name) := cache;
return cache;

end);

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 20 / 26

ToolsForHomalg - Advanced technical features

Convenience for caches: DeclareOperationWithCache

Declare an operation with cache
One can also declare an operation to be cached.

DeclareOperationWithCache("DirectSum",
[IsHomalgCategoryObject,

IsHomalgCategoryObject]);

This defines and installs SetDirectSum and HasDirectSum which
work as usual.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 21 / 26

ToolsForHomalg - Advanced technical features

Convenience for caches: DeclareOperationWithCache

Declare an operation with cache
One can also declare an operation to be cached.

DeclareOperationWithCache("DirectSum",
[IsHomalgCategoryObject,

IsHomalgCategoryObject]);

This defines and installs SetDirectSum and HasDirectSum which
work as usual.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 21 / 26

ToolsForHomalg - Advanced technical features

ToDoList

ToDoLists are a tool to keep track of logical implications.

What to do with them
Set possible complex logical implication as a ToDoListEntry.
They can apply theorems and spread knowledge.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 22 / 26

ToolsForHomalg - Advanced technical features

ToDoList

ToDoLists are a tool to keep track of logical implications.

What to do with them
Set possible complex logical implication as a ToDoListEntry.

They can apply theorems and spread knowledge.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 22 / 26

ToolsForHomalg - Advanced technical features

ToDoList

ToDoLists are a tool to keep track of logical implications.

What to do with them
Set possible complex logical implication as a ToDoListEntry.
They can apply theorems and spread knowledge.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 22 / 26

ToolsForHomalg - Advanced technical features

ToDoList example

Example taken from ToricVarieties

If U is an affine toric variety, the PICARD group is trivial.

U := ToricVariety(...);
D := Divisor(U, ...);
ToDoListEntry(rec(Source := [

rec(object := U,
attribute := "IsAffine",
value := true),

rec(object := D,
attribute := "IsCartier",
value := true)],

Range := rec(object := D
attribute := "IsPrincipal",
value := true));

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 23 / 26

ToolsForHomalg - Advanced technical features

ToDoList example

Example taken from ToricVarieties

If U is an affine toric variety, the PICARD group is trivial.

U := ToricVariety(...);
D := Divisor(U, ...);
ToDoListEntry(rec(Source := [

rec(object := U,
attribute := "IsAffine",
value := true),

rec(object := D,
attribute := "IsCartier",
value := true)],

Range := rec(object := D
attribute := "IsPrincipal",
value := true));

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 23 / 26

ToolsForHomalg - Advanced technical features

Advantages of ToDoLists

Advantages

Complex logical relations can be modeled.

ToDoLists keep track of propagated knowledge.
This can be used to create proofs.
A scheduling system might be possible.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 24 / 26

ToolsForHomalg - Advanced technical features

Advantages of ToDoLists

Advantages

Complex logical relations can be modeled.
ToDoLists keep track of propagated knowledge.

This can be used to create proofs.
A scheduling system might be possible.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 24 / 26

ToolsForHomalg - Advanced technical features

Advantages of ToDoLists

Advantages

Complex logical relations can be modeled.
ToDoLists keep track of propagated knowledge.
This can be used to create proofs.

A scheduling system might be possible.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 24 / 26

ToolsForHomalg - Advanced technical features

Advantages of ToDoLists

Advantages

Complex logical relations can be modeled.
ToDoLists keep track of propagated knowledge.
This can be used to create proofs.
A scheduling system might be possible.

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 24 / 26

ToolsForHomalg - Advanced technical features

Generic view - a tool to create view methods

What is generic view

Properties and attributes of objects can be listed in a graph with
implications to create generic view methods.

View and display can then be installed using this graphs.

print_graph :=
CreatePrintingGraph(IsHomalgCategoryMorphism);

AddRelationToGraph(print_graph,
rec(Source := ["IsSplitMonomorphism"],

Range := [rec(Conditions := "IsMonomorphism",
PrintString := "mono",
Adjective := true)]));

InstallPrintFunctionsOutOfPrintingGraph(print_graph);

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 25 / 26

ToolsForHomalg - Advanced technical features

Generic view - a tool to create view methods

What is generic view

Properties and attributes of objects can be listed in a graph with
implications to create generic view methods.
View and display can then be installed using this graphs.

print_graph :=
CreatePrintingGraph(IsHomalgCategoryMorphism);

AddRelationToGraph(print_graph,
rec(Source := ["IsSplitMonomorphism"],

Range := [rec(Conditions := "IsMonomorphism",
PrintString := "mono",
Adjective := true)]));

InstallPrintFunctionsOutOfPrintingGraph(print_graph);

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 25 / 26

ToolsForHomalg - Advanced technical features

Generic view - a tool to create view methods

What is generic view

Properties and attributes of objects can be listed in a graph with
implications to create generic view methods.
View and display can then be installed using this graphs.

print_graph :=
CreatePrintingGraph(IsHomalgCategoryMorphism);

AddRelationToGraph(print_graph,
rec(Source := ["IsSplitMonomorphism"],

Range := [rec(Conditions := "IsMonomorphism",
PrintString := "mono",
Adjective := true)]));

InstallPrintFunctionsOutOfPrintingGraph(print_graph);

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 25 / 26

ToolsForHomalg - Advanced technical features

Advantages of generic view

Advantages

Graph keeps track of relations between printed attributes.

Additionally, FullView and
FullViewWithEverythingComputed are installed.

gap> FullView(tau);
Full description:
morphism in the category QVectorSpaces
- iso: not computed yet
- mono: true
- split mono: true
- epi: not computed yet
- split epi: not computed yet
- identity: false

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 26 / 26

ToolsForHomalg - Advanced technical features

Advantages of generic view

Advantages

Graph keeps track of relations between printed attributes.
Additionally, FullView and
FullViewWithEverythingComputed are installed.

gap> FullView(tau);
Full description:
morphism in the category QVectorSpaces
- iso: not computed yet
- mono: true
- split mono: true
- epi: not computed yet
- split epi: not computed yet
- identity: false

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 26 / 26

ToolsForHomalg - Advanced technical features

Advantages of generic view

Advantages

Graph keeps track of relations between printed attributes.
Additionally, FullView and
FullViewWithEverythingComputed are installed.

gap> FullView(tau);
Full description:
morphism in the category QVectorSpaces
- iso: not computed yet
- mono: true
- split mono: true
- epi: not computed yet
- split epi: not computed yet
- identity: false

Gutsche, Posur CategoriesForHomalg Aachen, August 27, 2014 26 / 26

	Motivation
	A simple example
	Category theory based programming
	More advanced concepts implemented
	ToolsForHomalg - Advanced technical features

